| ɑ | 30° | 40° | 50° | 60° |
| β | 120° | 130° | 140° | 150° |
| γ | 150° | 140° | 130° | 120° |
分析 (1)由圓周角定理即可得出β=α+90°,然后根據(jù)D是BC的中點(diǎn),DE⊥BC,可知∠EDC=90°,由三角形外角的性質(zhì)即可得出∠CED=α,從而可知O、A、E、B四點(diǎn)共圓,由圓內(nèi)接四邊形的性質(zhì)可知:∠EBO+∠EAG=180°,即γ=-α+180°;
(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面積為△ABC的面積的4倍,所以$\frac{AE}{AC}=4$,根據(jù)勾股定理即可求出AE、AC的長(zhǎng)度,從而可求出AB的長(zhǎng)度,再由勾股定理即可求出⊙O的半徑r;
解答 解:(1)猜想:β=α+90°,γ=-α+180°
連接OB,![]()
∴由圓周角定理可知:2∠BCA=360°-∠BOA,
∵OB=OA,
∴∠OBA=∠OAB=α,
∴∠BOA=180°-2α,
∴2β=360°-(180°-2α),
∴β=α+90°,
∵D是BC的中點(diǎn),DE⊥BC,
∴OE是線段BC的垂直平分線,
∴BE=CE,∠BED=∠CED,∠EDC=90°
∵∠BCA=∠EDC+∠CED,
∴β=90°+∠CED,
∴∠CED=α,
∴∠CED=∠OBA=α,
∴O、A、E、B四點(diǎn)共圓,
∴∠EBO+∠EAG=180°,![]()
∴∠EBA+∠OBA+∠EAG=180°,
∴γ+α=180°;
(2)當(dāng)γ=135°時(shí),此時(shí)圖形如圖所示,
∴α=45°,β=135°,
∴∠BOA=90°,∠BCE=45°,
由(1)可知:O、A、E、B四點(diǎn)共圓,
∴∠BEC=90°,
∵△ABE的面積為△ABC的面積的4倍,
∴$\frac{AE}{AC}=4$,
∴$\frac{CE}{AC}=3$,
設(shè)CE=3x,AC=x,
由(1)可知:BC=2CD=6,
∵∠BCE=45°,
∴CE=BE=3x,
∴由勾股定理可知:(3x)2+(3x)2=62,
x=$\sqrt{2}$,
∴BE=CE=3$\sqrt{2}$,AC=$\sqrt{2}$,
∴AE=AC+CE=4$\sqrt{2}$,
在Rt△ABE中,
由勾股定理可知:AB2=(3$\sqrt{2}$)2+(4$\sqrt{2}$)2,
∴AB=5$\sqrt{2}$,
∵∠BAO=45°,
∴∠AOB=90°,
在Rt△AOB中,設(shè)半徑為r,
由勾股定理可知:AB2=2r2,
∴r=5,
∴⊙O半徑的長(zhǎng)為5.
點(diǎn)評(píng) 本題考查圓的綜合問題,涉及圓周角定理,勾股定理,解方程,垂直平分線的性質(zhì)等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 方差是21 | B. | 平均數(shù)是26 | C. | 眾數(shù)是22 | D. | 中位數(shù)是24 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8a2-4a=4a | B. | (-a3b)2=a6b2 | C. | a-2+a2=a0 | D. | a2•4a4=4a8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠ABD=∠E | B. | ∠CBE=∠C | C. | AD∥BC | D. | AD=BC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| 研發(fā)組 | 管理組 | 操作組 | |
| 日工資(元) | 200 | 180 | 160 |
| 人數(shù)(人) | 3 | 4 | 5 |
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2017屆江蘇省啟東市九年級(jí)寒假作業(yè)測(cè)試(開學(xué)考試)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD=
,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com