分析 (1)因?yàn)锽F=DH⇒BF=AE,由AB=AD,∠ABC=∠ADH⇒△ABF≌△ADH(SAS);
(2)將△ADH繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,可得△AFH≌△AFM然后可求得結(jié)論;
(3)設(shè)BF=x,GB=y,根據(jù)線段之間的關(guān)系利用勾股定理求出xy的值;
解答 (1)證明:連接AH、AF.![]()
∵ABCD是正方形,
∴AD=AB,∠D=∠B=90°.
∵ADHG與ABFE都是矩形,
∴DH=AG,AE=BF,
又∵BF=DH,
∴AE=BF.
在Rt△ADH與Rt△ABF中,
∵AD=AB,∠D=∠B=90°,DH=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.
(2)證明:將△ADH繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△ABM的位置.![]()
在△AMF與△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵M(jìn)F=MB+BF=HD+BF,
∴△FCH的周長(zhǎng)=CF+FH+CH=CF+BF+CH+DH=2a.
(3)解:設(shè)BF=x,GB=y,則FC=a-x,AG=a-y,(0<x<1,0<y<1)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周長(zhǎng)為a,
∴BF+BG+GF=x+y+$\sqrt{{x}^{2}+{y}^{2}}$=a,
即 $\sqrt{{x}^{2}+{y}^{2}}$=a-(x+y)
即x2+y2=a2-2a(x+y)+(x+y)2
整理得2xy-2ax-2ay+a2=0
∴xy-ax-ay=-$\frac{1}{2}$a2,
∴矩形EPHD的面積S=PH•EP=FC•AG=(a-x)(a-y)=xy-ax-ay+a2=-$\frac{1}{2}$a2+a2=$\frac{1}{2}$a2.
點(diǎn)評(píng) 本題考查正方形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{15}{64}$ | B. | $\frac{1}{4}$ | C. | $\frac{13}{48}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com