分析 (1)根據全等三角形的性質得出AD=CE,再利用勾股定理解答即可;
(2)根據全等三角形的性質得出∠FEC=∠DAF,得出AD∥BE,利用平行線的性質證明即可.
解答 解:(1)∵△ADF與△FCE全等,
∴AD=CE=1,
在RT△ABE中,BE=$\sqrt{A{B}^{2}+A{E}^{2}}=\sqrt{{2}^{2}+(2\sqrt{3})^{2}}=4$,
∴BC=BE-CE=4-1=3;
(2)∵△ADF與△FCE全等,
∴∠FEC=∠DAF,
∴AD∥BE,
∴∠B+∠DAB=180°,
∵∠DAB+∠DCB=180°,
∴∠B=∠DCB.
點評 此題考查全等三角形的性質,關鍵是根據全等三角形的對應角相等和對應邊相等進行分析.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com