欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.如圖,在?ABCD中,對角線AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過點(diǎn)B作BE⊥AB交AC于點(diǎn)E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=$\frac{7}{8}$,求線段OE的長.

分析 (1)根據(jù)∠CAB=∠ACB利用等角對等邊得到AB=CB,從而判定平行四邊形ABCD是菱形,根據(jù)菱形的對角線互相垂直即可證得結(jié)論;
(2)分別在Rt△AOB中和在Rt△ABE中求得AO和AE,從而利用OE=AE-AO求解即可.

解答 解:(1)∵∠CAB=∠ACB,
∴AB=CB,
∴?ABCD是菱形.
∴AC⊥BD;

(2)在Rt△AOB中,cos∠CAB=$\frac{AO}{AB}$=$\frac{7}{8}$,AB=14,
∴AO=14×$\frac{7}{8}$=$\frac{49}{4}$,
在Rt△ABE中,cos∠EAB=$\frac{AB}{AE}$=$\frac{7}{8}$,AB=14,
∴AE=$\frac{8}{7}$AB=16,
∴OE=AE-AO=16-$\frac{49}{4}$=$\frac{15}{4}$.

點(diǎn)評 本題考查了解直角三角形及菱形的判定與性質(zhì)、平行四邊變形的判定與性質(zhì)的知識,解題的關(guān)鍵是讀懂題意,選擇合適的邊角關(guān)系,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.在直角坐標(biāo)平面中,如果點(diǎn)A在第四象限內(nèi),且到x軸的距離為3,到y(tǒng)軸的距離為4,那么點(diǎn)A的坐標(biāo)是( 。
A.(3,-4)B.(-3,4)C.(4,-3)D.(-4,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.下列不等式變形正確的是( 。
A.由a>b得ac>bcB.由a>b得-2a>-2bC.由a>b得-a<-bD.由a>b得a-2<b-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,在等腰△ABC中,直線l垂直底邊BC,現(xiàn)將直線l沿線段BC從B點(diǎn)勻速平移至C點(diǎn),直線l與△ABC的邊相交于E、F兩點(diǎn).設(shè)線段EF的長度為y,平移時間為t,則下圖中能較好反映y與t的函數(shù)關(guān)系的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風(fēng)景線.某校數(shù)學(xué)興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖).已知測量儀器CD的高度為1米,則橋塔AB的高度約為(  )(參考數(shù)據(jù):sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)
A.34米B.38米C.45米D.50米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,為了測得電視塔的高度AB,在D處用高為1米的測角儀CD,測得電視塔頂端A的仰角為30°,再向電視塔方向前進(jìn)100米達(dá)到F處,又測得電視塔頂端A的仰角為60°,則這個電視塔的高度AB(單位:米)為(  )
A.50$\sqrt{3}$B.51C.50$\sqrt{3}$+1D.101

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△ABC中,點(diǎn)E、P在邊AB上,且AE=BP,過點(diǎn)E、P作BC的平行線,分別交AC于點(diǎn)F、Q,記△AEF的面積為S1,四邊形EFQP的面積為S2,四邊形PQCB的面積為S3
(1)求證:EF+PQ=BC;
(2)若S1+S3=S2,求$\frac{PE}{AE}$的值;
(3)若S3-S1=S2,直接寫出$\frac{PE}{AE}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長線上有點(diǎn)E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若OF:OB=1:3,⊙O的半徑R=3,求$\frac{BD}{AD}$的值.

查看答案和解析>>

同步練習(xí)冊答案