分析 (1)根據勾股定理求得AB,進而求得AD,然后證得△ADE∽△ACB,根據相似三角形的性質得出$\frac{AE}{AB}$=$\frac{AD}{AC}$,即$\frac{AE}{15}$=$\frac{\frac{15}{2}}{12}$,即可求得AE=$\frac{75}{8}$;
(2)因為兩個直角三角形的斜邊AE≠BD,所以△ADE與△DFB不會全等.
解答 解:(1)∵在Rt△ABC中,∠C=90°,AC=12,BC=9,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=15,
∴AD=$\frac{1}{2}$AB=$\frac{15}{2}$,
∵∠ADE=∠C=90°,∠DAE=∠CAB,
∴△ADE∽△ACB,
∴$\frac{AE}{AB}$=$\frac{AD}{AC}$,即$\frac{AE}{15}$=$\frac{\frac{15}{2}}{12}$,
∴AE=$\frac{75}{8}$,;
(2)不全等,
理由:∵AB=15,
∴BD=$\frac{1}{2}$AB=$\frac{15}{2}$,
∵AE=$\frac{75}{8}$,
∴AE≠BD,
∴△ADE與△DFB不會全等.
點評 本題考查了線段垂直平分線的性質,勾股定理的應用,三角形全等的判定,熟練掌握性質定理是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com