分析 (1)連接OE,OC,即可證明△OEC≌△OEC,根據(jù)DE與⊙O相切于點(diǎn)E得到OEC=90°,從而證得∠OBC=90°,則BC是圓的切線.
(2)先求線段BC的長(zhǎng),過(guò)D作DF⊥BG于F,則四邊形ABFD是矩形,有DF=AB=2$\sqrt{5}$,在Rt△DCF中,由切線長(zhǎng)定理知AD=DE、CE=BC,那么CD=CE+2,CF=CE-2,利用勾股定理可求得CE的長(zhǎng);△ADE中,由于AD=DE,可得到∠DAE=∠AED=∠CEG,而AD∥BG,根據(jù)平行線的內(nèi)錯(cuò)角相等得到∠G=∠EAD=∠CEG,由此可證得CE=CG=CB,即可求得BG的長(zhǎng);在Rt△ABG中,利用勾股定理可求得AG的值,易證△ADE∽△GCE,根據(jù)相似三角形的相似比,可求得AE、EG的比例關(guān)系,聯(lián)立AG的長(zhǎng),即可得到EG的值.
解答
(1)證明:如圖1,連接OE,OC;
∵CB=CE,OB=OE,OC=OC
∴△OEC≌△OBC(SSS)
∴∠OBC=∠OEC
又∵DE與⊙O相切于點(diǎn)E
∴∠OEC=90°
∴∠OBC=90°
∴BC為⊙O的切線.
(2)解:如圖2,過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,
∵AD,DC,BG分別切⊙O于點(diǎn)A,E,B
∴DA=DE,CE=CB,
設(shè)BC為x,則CF=x-2,DC=x+2,
在Rt△DFC中,(x+2)2-(x-2)2=(2$\sqrt{5}$)2,
解得:x=$\frac{5}{2}$,
∴CE=BC=$\frac{5}{2}$;
∵AD∥BG,
∴∠DAE=∠EGC,
∵DA=DE,
∴∠DAE=∠AED;
∵AD∥BG,![]()
∵∠AED=∠CEG,
∴∠EGC=∠CEG,
∴CG=CE=CB=$\frac{5}{2}$,
∴BG=5,
∴AG=$\sqrt{(2\sqrt{5})^{2}+{5}^{2}}$=3$\sqrt{5}$,
連接BE,S△ABG=$\frac{1}{2}$AB•BG=AG•BE,
∴BE=$\frac{10}{3}$,
在Rt△BEG中,EG=$\sqrt{B{G}^{2}-B{E}^{2}}$=$\frac{5}{3}$$\sqrt{5}$.
點(diǎn)評(píng) 此題主要考查了切線的判定和性質(zhì)、全等三角形及相似三角形的判定和性質(zhì)、勾股定理、切線長(zhǎng)定理等知識(shí)的綜合應(yīng)用,是一道難度較大的綜合題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 10000 m | B. | 1000 m | C. | 100 m | D. | 10 m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 9 | B. | 12 | C. | 9或12 | D. | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com