分析 (1)根據(jù)圖形旋轉(zhuǎn)前后對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,判定△AEF≌△AE′F,進(jìn)而根據(jù)線段的和差關(guān)系得出結(jié)論;
(2)先在BE上截取BG=DF,連接AG,構(gòu)造△ABG≌△ADF,進(jìn)而利用全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,判定△GAE≌△FAE,最后根據(jù)線段的和差關(guān)系得出結(jié)論.
解答 解:(1)①如圖2,![]()
將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′,則
∠1=∠2,BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠1+∠3=30°,
∴∠2+∠3=30°,即∠FAE′=30°
②由①知∠EAF=∠FAE′,
在△AEF和△AE′F中,
∵$\left\{\begin{array}{l}{AE=AE′}\\{∠EAF=∠FAE′}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即線段BE、EF、FD之間的數(shù)量關(guān)系為BE+DF=EF,
故答案為:①30°;②BE+DF=EF;
(2)如圖3,在BE上截取BG=DF,連接AG,![]()
在△ABG和△ADF中,
∵$\left\{\begin{array}{l}{AB=AD}\\{∠ABE=∠ADF}\\{BG=DF}\end{array}\right.$,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,且AG=AF,
∵∠DAF+∠DAE=30°,
∴∠BAG+∠DAE=30°,
∵∠BAD=60°,
∴∠GAE=60°-30°=30°,
∴∠GAE=∠FAE,
在△GAE和△FAE中,
∵$\left\{\begin{array}{l}{AG=AF}\\{∠GAE=∠FAE}\\{AE=AE}\end{array}\right.$,
∴△GAE≌△FAE(SAS),
∴GE=FE,
又∵BE-BG=GE,BG=DF,
∴BE-DF=EF,
即線段BE、EF、FD之間的數(shù)量關(guān)系為BE-DF=EF.
點(diǎn)評(píng) 本題主要考查旋轉(zhuǎn)的性質(zhì),熟練掌握①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2a | B. | 2b | C. | 2a+2b | D. | 2b-2c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com