分析 連接BP,設(shè)點(diǎn)C到BE的距離為h,然后根據(jù)S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根據(jù)正方形的性質(zhì)求出h即可.
解答 解:如圖,連接BP,設(shè)點(diǎn)C到BE的距離為h,
則S△BCE=S△BCP+S△BEP,![]()
即$\frac{1}{2}$BE•h=$\frac{1}{2}$BC•PQ+$\frac{1}{2}$BE•PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的邊長(zhǎng)為4,
∴h=4×$\frac{\sqrt{2}}{2}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),三角形的面積,熟記性質(zhì)并作輔助線,利用三角形的面積求出PQ+PR等于點(diǎn)C到BE的距離是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{x^6}{x^2}$=x3 | B. | $\frac{x+y}{x+y}$=0 | C. | $\frac{x+y}{{{x^2}+xy}}=\frac{1}{x}$ | D. | $\frac{{2x{y^2}}}{{4{x^2}y}}=\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com