分析 (1)如圖①,連接PC.根據(jù)“內(nèi)接四邊形的對(duì)角互補(bǔ)的性質(zhì)”即可證得結(jié)論;
(2)如圖②,通過(guò)作輔助線BC、PE、CE(連接BC,延長(zhǎng)BP至E,使PE=PC,連接CE)構(gòu)建等邊△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的對(duì)應(yīng)邊相等和線段間的和差關(guān)系可以求得PA=PB+PC;
(3)如圖③,在線段PC上截取PQ,使PQ=PB,過(guò)點(diǎn)A作AG⊥PC于點(diǎn)G.利用全等三角形△ABP≌△AQP(SAS)的對(duì)應(yīng)邊相等推知AB=AQ,PB=PG,將PA、PB、PC的數(shù)量關(guān)系轉(zhuǎn)化到△APC中來(lái)求即可.
解答
(1)證明:如圖①,連接PC.
∵△ACQ是由△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到的,
∴∠ABP=∠ACQ.
由圖①知,點(diǎn)A、B、P、C四點(diǎn)共圓,
∴∠ACP+∠ABP=180°(圓內(nèi)接四邊形的對(duì)角互補(bǔ)),
∴∠ACP+∠ACQ=180°(等量代換);
(2)解:PA=PB+PC.理由如下:
如圖②,連接BC,延長(zhǎng)BP至E,使PE=PC,連接CE.
∵弦AB=弦AC,∠BAC=60°,
∴△ABC是等邊三角形(有一內(nèi)角為60°的等腰三角形是等邊三角形).
∵A、B、P、C四點(diǎn)共圓,
∴∠BAC+∠BPC=180°(圓內(nèi)接四邊形的對(duì)角互補(bǔ)),
∵∠BPC+∠EPC=180°,
∴∠BAC=∠CPE=60°,
∵PE=PC,
∴△PCE是等邊三角形,
∴CE=PC,∠E=∠ECP=∠EPC=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,
∴∠BCE=∠ACP(等量代換).
在△BEC和△APC中,$\left\{\begin{array}{l}{CE=PC}\\{∠BCE=∠ACP}\\{AC=BC}\end{array}\right.$,
∴△BEC≌△APC(SAS),
∴BE=PA,
∴PA=BE=PB+PC;
(3)若∠BAC=120°時(shí),(2)中的結(jié)論不成立.$\sqrt{3}$PA=PB+PC.理由如下:
如圖③,在線段PC上截取PQ,使PQ=PB,過(guò)點(diǎn)A作AG⊥PC于點(diǎn)G.
∵∠BAC=120°,∠BAC+∠BPC=180°,
∴∠BPC=60°.
∵弦AB=弦AC,
∴∠APB=∠APQ=30°.
在△ABP和△AQP中,
∵$\left\{\begin{array}{l}{PB=PQ}\\{∠APB=∠APQ}\\{AP=AP}\end{array}\right.$,
∴△ABP≌△AQP(SAS),
∴AB=AQ,PB=PQ(全等三角形的對(duì)應(yīng)邊相等),
∴AQ=AC(等量代換).
在等腰△AQC中,QG=CG.
在Rt△APG中,∠APG=30°,則AP=2AG,PG=$\sqrt{3}$AG.
∴PB+PC=PG-QG+PG+CG=PG-QG+PG+QG=2PG=2$\sqrt{3}$AG,
∴$\sqrt{3}$PA=2$\sqrt{3}$AG,即$\sqrt{3}$PA=PB+PC.
點(diǎn)評(píng) 本題考查了圓心角、弧、弦間的關(guān)系,等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定和性質(zhì),四點(diǎn)共圓,圓內(nèi)接四邊形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | A | B. | B | C. | C | D. | D |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a2+a2=a4 | B. | 2x•3x2=6x3 | C. | (-a2b)2=a4b | D. | (x+3)2=x2+9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com