分析 首先證明△ABD∽△ACD,然后根據(jù)BD:CD=3:2,設(shè)BD=3x,CD=2x,利用對應(yīng)邊成比例表示出AD的值,繼而可得出tanB的值.
解答 解:在Rt△ABC中,
∵AD⊥BC于點(diǎn)D,
∴∠ADB=∠CDA,
∵∠B+∠BAD=90°,∠BAD+∠DAC=90°,
∴∠B=∠DAC,
∴△ABD∽△CAD,
∴$\frac{BD}{AD}=\frac{AD}{CD}$,
∵BD:CD=3:2,
設(shè)BD=3x,CD=2x,
∴AD=$\sqrt{3x•2x}$=$\sqrt{6}$x,
則tanB=$\frac{AD}{BD}$=$\frac{\sqrt{6}x}{3x}$=$\frac{\sqrt{6}}{3}$.
故答案為:$\frac{\sqrt{6}}{3}$.
點(diǎn)評 本題考查了相似三角形的判定與性質(zhì)及銳角三角函數(shù)的定義,難度一般,解答本題的關(guān)鍵是根據(jù)垂直證明三角形的相似,根據(jù)對應(yīng)邊成比例求邊長.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | c<a<b | B. | c<b<a | C. | b<c<a | D. | a<b<c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com