欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖(1),在△ABC中,∠BAC=90°,AB=AC,在△ABC內(nèi)部做△CED,使∠CED=90°,E在BC上,D在AC上,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF、AE、EF.

(1)證明:AE=EF;
(2)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖(1)的基礎(chǔ)上,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否成立?若成立,結(jié)合圖(2)寫出證明過程;若不成立,請說明理由.

分析 (1)根據(jù)△ABC是等腰直角三角形,△CDE是等腰直角三角形,四邊形ABFD是平行四邊形,判定△ACE≌△FDE(SAS),進(jìn)而得出AE=EF;
(2)根據(jù)∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根據(jù)AE=FE,得到△AEF是等腰直角三角形,進(jìn)而得到AF=$\sqrt{2}$AE;
(3)延長FD交AC于K,先證明△EDF≌△ECA(SAS),再證明△AEF是等腰直角三角形即可得出結(jié)論.

解答 解:(1)如圖1,∵△ABC中,∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∵∠CED=90°,E在BC上,D在AC上,
∴△CDE是等腰直角三角形,
∴CE=CD,
∵四邊形ABFD是平行四邊形,
∴DF=AB=AC,
∵平行四邊形ABFD中,AB∥DF,
∴∠CDF=∠CAB=90°,
∵∠C=∠CDE=45°,
∴∠FDE=45°=∠C,
在△ACE和△FDE中,
$\left\{\begin{array}{l}{AC=FD}\\{∠C=∠FDE}\\{CE=DE}\end{array}\right.$,
∴△ACE≌△FDE(SAS),
∴AE=EF;

(2)AF=$\sqrt{2}$AE.
證明:如圖1,∵AB∥DF,∠BAD=90°,
∴∠ADF=90°,
∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,
∵△ACE≌△FDE,
∴∠DAE=∠DFE,
∴∠DFE+∠EAF+∠AFD=90°,
即△AEF是直角三角形,
又∵AE=FE,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE;

(3)AF=$\sqrt{2}$AE仍成立.
證明:如圖2,延長FD交AC于K.
∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,
∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC,
在△EDF和△ECA中,
$\left\{\begin{array}{l}{DF=AC}\\{∠EDF=∠ACE}\\{DE=CE}\end{array}\right.$,
∴△EDF≌△ECA(SAS),
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE.

點(diǎn)評 本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的性質(zhì)等知識的綜合應(yīng)用,等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì).解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),尋找全等的條件是解題的難點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若$\sqrt{a+b+5}$+|2a-b+1|=0,則(b-a)2016=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知:正方形紙片ABCD的邊長為4,將該正方形紙片沿EF折疊(E,F(xiàn)分別在AB,CD邊上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P.
(1)如圖①,連接PE,若M是AD邊的中點(diǎn).①圖中與△PMD相似的三角形是△AME∽△DPM,△MPD∽△FPN,△EMP∽△MDP;
②求△PMD的周長.
(2)如圖②,隨著落點(diǎn)M在AD邊上移動(點(diǎn)M不與A、D重合),△PDM的周長是否發(fā)生變化?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK,若∠MKN=43°,則∠P的度數(shù)為94度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.己知二次函數(shù)y=ax2-ax-x(a≠0)
(1)若對稱軸是直線x=1
①求二次函數(shù)的解析式;
②二次函數(shù)y=ax2-ax-x-t(t為實(shí)數(shù))圖象的頂點(diǎn)在x軸上,求t的值;
(2)把拋物線k1:y=ax2-ax-x向上平移1個(gè)單位得到新的拋物線k2,若a<0,求k2落在x軸上方的部分對應(yīng)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.用圖象法解不等式:2x+1>-$\frac{1}{2}$x+6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動,轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是$\sqrt{3}$+1;如圖2,當(dāng)a=60°時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時(shí),為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請你幫助他直接寫出這個(gè)關(guān)系;cosα=$\frac{R-m}{R}$(用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是90°<α≤120°,并求出在這個(gè)變化過程中陰影部分(弓形)面積的最大值(用m表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.一輛汽車開往距離出發(fā)地180km的目的地,出發(fā)后第一小時(shí)按原計(jì)劃的速度勻速行駛,一小時(shí)后以原來速度的1.5倍勻速行駛,結(jié)果比原計(jì)劃提前40min到達(dá)目的地.原計(jì)劃的行駛速度是60km/h.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如表記錄了甲、乙、丙、丁四名跳高運(yùn)動員最近幾次選拔賽成績的平均數(shù)與方差:
平均數(shù)(cm)185180185180
方差3.63.67.48.1
根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)該選擇(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案