分析 (1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα=$\frac{O′E}{O′M}$=$\frac{1}{2}$,推出α=60°.
(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問(wèn)題.
(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問(wèn)題、
(4)當(dāng)半圓與射線AB相切時(shí),之后開(kāi)始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°.當(dāng)N′落在AB上時(shí),陰影部分面積最大,求出此時(shí)的面積即可.
解答 解:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長(zhǎng)即可.![]()
在Rt△MFO′中,∵∠MO$′\\;F$F=30°,MO′=2,
∴O′F=O′M•cos30°=$\sqrt{3}$,O′E=$\sqrt{3}$+1,
∴點(diǎn)O′到AB的距離為$\sqrt{3}$+1.
如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,![]()
∴AE=O′F=2,
∵AM=1,
∴EM=1,
在Rt△O′EM中,sinα=$\frac{O′E}{O′M}$=$\frac{1}{2}$,
∴α=60°
故答案為$\sqrt{3}$+1,60°.
(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.![]()
∵O′P=R,
∴R=$\frac{\sqrt{3}}{2}$R+1,
∴R=4+2$\sqrt{3}$.
(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.![]()
在Rt△O′QM中,O′Q=R•cosα,QP=m,
∵O′P=R,
∴R•cosα+m=R,
∴cosα=$\frac{R-m}{R}$.
故答案為$\frac{R-m}{R}$.
(4)如圖5中,![]()
當(dāng)半圓與射線AB相切時(shí),之后開(kāi)始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°
故答案為90°<α≤120°;
當(dāng)N′落在AB上時(shí),陰影部分面積最大,
所以S═$\frac{120•π•{m}^{2}}{360}$-$\frac{1}{2}$•$\sqrt{3}$m•$\frac{1}{2}$m=$\frac{π{m}^{2}}{3}$-$\frac{\sqrt{3}}{4}$m2.
點(diǎn)評(píng) 本題考查圓綜合題、旋轉(zhuǎn)變換、切線的判定和性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形或特殊四邊形解決問(wèn)題,所以中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 有兩個(gè)不相等的實(shí)數(shù)根 | B. | 有兩個(gè)不相等的實(shí)數(shù)根 | ||
| C. | 無(wú)實(shí)數(shù)根 | D. | 無(wú)法確定 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com