欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過(guò)的角度記作a;設(shè)半圓O的半徑為R,AM的長(zhǎng)度為m,回答下列問(wèn)題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是$\sqrt{3}$+1;如圖2,當(dāng)a=60°時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長(zhǎng)度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿(mǎn)足要求的R,并說(shuō)明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫(xiě)出這個(gè)關(guān)系;cosα=$\frac{R-m}{R}$(用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是90°<α≤120°,并求出在這個(gè)變化過(guò)程中陰影部分(弓形)面積的最大值(用m表示)

分析 (1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα=$\frac{O′E}{O′M}$=$\frac{1}{2}$,推出α=60°.
(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問(wèn)題.
(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問(wèn)題、
(4)當(dāng)半圓與射線AB相切時(shí),之后開(kāi)始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°.當(dāng)N′落在AB上時(shí),陰影部分面積最大,求出此時(shí)的面積即可.

解答 解:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長(zhǎng)即可.

在Rt△MFO′中,∵∠MO$′\\;F$F=30°,MO′=2,
∴O′F=O′M•cos30°=$\sqrt{3}$,O′E=$\sqrt{3}$+1,
∴點(diǎn)O′到AB的距離為$\sqrt{3}$+1.
如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,

∴AE=O′F=2,
∵AM=1,
∴EM=1,
在Rt△O′EM中,sinα=$\frac{O′E}{O′M}$=$\frac{1}{2}$,
∴α=60°
故答案為$\sqrt{3}$+1,60°.

(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.

∵O′P=R,
∴R=$\frac{\sqrt{3}}{2}$R+1,
∴R=4+2$\sqrt{3}$.

(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.

在Rt△O′QM中,O′Q=R•cosα,QP=m,
∵O′P=R,
∴R•cosα+m=R,
∴cosα=$\frac{R-m}{R}$.
故答案為$\frac{R-m}{R}$.

(4)如圖5中,

當(dāng)半圓與射線AB相切時(shí),之后開(kāi)始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°
故答案為90°<α≤120°;
當(dāng)N′落在AB上時(shí),陰影部分面積最大,
所以S═$\frac{120•π•{m}^{2}}{360}$-$\frac{1}{2}$•$\sqrt{3}$m•$\frac{1}{2}$m=$\frac{π{m}^{2}}{3}$-$\frac{\sqrt{3}}{4}$m2

點(diǎn)評(píng) 本題考查圓綜合題、旋轉(zhuǎn)變換、切線的判定和性質(zhì)、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形或特殊四邊形解決問(wèn)題,所以中考?jí)狠S題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.方程(x-3)(x+1)=0的較小的根是x=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,一拋物線經(jīng)過(guò)點(diǎn)A(-2,0),B(6,0),C(0,-3),D為拋物線的頂點(diǎn),過(guò)OD的中點(diǎn)E,作EF⊥x軸于點(diǎn)F,G為x軸上一動(dòng)點(diǎn),M為拋物線上一動(dòng)點(diǎn),N為直線EF上一動(dòng)點(diǎn),當(dāng)以F、G、M、N為頂點(diǎn)的四邊形是正方形時(shí),點(diǎn)G的坐標(biāo)為(4-2$\sqrt{6}$,0)、(-4,0)、(4+2$\sqrt{6}$,0)或(4,0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖(1),在△ABC中,∠BAC=90°,AB=AC,在△ABC內(nèi)部做△CED,使∠CED=90°,E在BC上,D在AC上,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF、AE、EF.

(1)證明:AE=EF;
(2)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖(1)的基礎(chǔ)上,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問(wèn)中的結(jié)論是否成立?若成立,結(jié)合圖(2)寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.解方程:2017x2-1=2x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG,F(xiàn)C,下列結(jié)論:
①∠BAG=30°
②△GFC是等腰三角形
③AG∥CF
④S△FGC=3,其中正確結(jié)論是②③.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知x,y是實(shí)數(shù),且4x2-5xy+4y2=5,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.羅平、昆明兩地相距240千米,甲車(chē)從羅平出發(fā)勻速開(kāi)往昆明,乙車(chē)同時(shí)從昆明出發(fā)勻速開(kāi)往羅平,兩車(chē)相遇時(shí)距羅平90千米,已知乙車(chē)每小時(shí)比甲車(chē)多行駛30千米,求甲、乙兩車(chē)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一元二次方程x2+x+$\frac{1}{3}$=0的根的情況是( 。
A.有兩個(gè)不相等的實(shí)數(shù)根B.有兩個(gè)不相等的實(shí)數(shù)根
C.無(wú)實(shí)數(shù)根D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案