分析 (1)根據(jù)平行四邊形的判定與性質(zhì)得到四邊形BECD為平行四邊形,然后由SSS推出兩三角形全等即可;
(2)欲證明四邊形BECD是矩形,只需推知BC=ED.
解答
證明:(1)在平行四邊形ABCD中,AD=BC,AB=CD,AB∥CD,則BE∥CD.
又∵AB=BE,
∴BE=DC,
∴四邊形BECD為平行四邊形,
∴BD=EC.
∴在△ABD與△BEC中,
$\left\{\begin{array}{l}{AB=BE}\\{BD=EC}\\{AD=BC}\end{array}\right.$,
∴△ABD≌△BEC(SSS);
(2)由(1)知,四邊形BECD為平行四邊形,則OD=OE,OC=OB.
∵四邊形ABCD為平行四邊形,
∴∠A=∠BCD,即∠A=∠OCD.
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四邊形BECD為矩形.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)和判定,矩形的判定,平行線的性質(zhì),全等三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,難度較大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | AB=BE | B. | BE⊥DC | C. | ∠ADB=90° | D. | CE⊥DE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 三棱錐 | B. | 三棱柱 | C. | 圓柱 | D. | 長(zhǎng)方體 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com