分析 (1)欲證明EF=FG,只需證得△FAE≌△GAF,利用該全等三角形的對(duì)應(yīng)邊相等證得結(jié)論;
(2)過點(diǎn)C作CE⊥BC,垂足為點(diǎn)C,截取CE,使CE=BM.連接AE、EN.通過證明△ABM≌△ACE(SAS)推知全等三角形的對(duì)應(yīng)邊AM=AE、對(duì)應(yīng)角∠BAM=∠CAE;然后由等腰直角三角形的性質(zhì)和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的對(duì)應(yīng)邊MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.
解答 (1)證明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,∵在△ABE和△ADG中,
$\left\{\begin{array}{l}{AD=AB}\\{∠ABE=∠ADG}\\{DG=BE}\end{array}\right.$,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∴∠EAG=90°,
在△FAE和△GAF中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠FAG=45°}\\{AF=AF}\end{array}\right.$,
∴△FAE≌△GAF(SAS),
∴EF=FG;
(2)解:如圖,過點(diǎn)C作CE⊥BC,垂足為點(diǎn)C,截取CE,使CE=BM.連接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.![]()
在△ABM和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠B=∠ACE}\\{BM=CE}\end{array}\right.$,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
$\left\{\begin{array}{l}{AM=AE}\\{∠MAN=∠EAN}\\{AN=AN}\end{array}\right.$,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
∴MN2=BM2+NC2.
∵BM=2,CN=3,
∴MN2=22+32,
∴MN=$\sqrt{13}$.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì)、勾股定理的運(yùn)用、等腰直角三角形的性質(zhì),題目的綜合性較強(qiáng),難度較大,解題的關(guān)鍵是正確的作出輔助線構(gòu)造全等三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3.36×10-5 | B. | 3.36×10-6 | C. | 33.6×10-5 | D. | 3.36×10-8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 5$\sqrt{5}$ | C. | 8 | D. | 10$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | $\frac{1}{4}$ | D. | 沒有意義 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com