分析 (1)先根據(jù)三角形內(nèi)角和定理求出∠ACB+∠ABC的度數(shù),由∠ABD=20°,∠ACD=35°求出∠DBC+∠DCB的度數(shù),再根據(jù)三角形內(nèi)角和等于180°即可得出結(jié)論;
(2)連接BC,由三角形內(nèi)角和定理可得出∠A+∠ABD+∠ACD=180°-∠DBC-∠BCD,同理,在△DBC中∠BDC=180°-∠DBC-∠BCD,由此即可得出結(jié)論;
(3)先根據(jù)∠DAE=50°,∠DBE=130°得出∠ADB+∠AEB=80°,再由DC平分∠ADB,EC平分∠AEB可知∠ADC=$\frac{1}{2}$∠ADB,∠AEC=$\frac{1}{2}$∠AEB,故可得出∠ADC+∠AEC=$\frac{1}{2}$(∠ADB+∠AEB)=40°,∠DCE=∠A+∠ADC+∠AEC=50°+40°=90°.
解答 解:(1)∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°-62°=118°,
∵∠ABD=20°,∠ACD=35°,
∴∠DBC+∠DCB=118°-20°-35°=63°,
∴∠BDC=180°-(∠DBC+∠DCB)=117°;
(2)∠BDC=∠A+∠B+∠C,
理由:連接BC,
∵∠A+∠ABD+∠DBC+∠ACD+∠BCD=180°,
∴∠A+∠ABD+∠ACD=180°-∠DBC-∠BCD,
∵∠BDC+∠DBC+∠BCD=180°,
∴∠BDC=180°-∠DBC-∠BCD,
∴∠BDC=∠A+∠B+∠C;
(3)∵∠DAE=50°,∠DBE=130°,
∴∠ADB+∠AEB=80°,
∵DC平分∠ADB,EC平分∠AEB,
∴∠ADC=$\frac{1}{2}$∠ADB,∠AEC=$\frac{1}{2}$∠AEB,
∴∠ADC+∠AEC=$\frac{1}{2}$(∠ADB+∠AEB)=40°,
∴∠DCE=∠A+∠ADC+∠AEC=50°+40°=90°.
點(diǎn)評(píng) 本題考查的是三角形內(nèi)角和定理,熟知三角形的內(nèi)角和等于180°是解答此題的關(guān)鍵,注意角平分線的定義的正確運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 25π | B. | $\frac{25}{4}$π | C. | $\frac{25}{2}$π | D. | $\frac{13}{2}$π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1,2,3 | B. | 2,3,4 | C. | 3,4,5 | D. | 4,5,6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com