分析 (1)〖法二〗如圖2,延長(zhǎng)DE,CB相交于點(diǎn)R,作BM∥PC,根據(jù)AQ∥PC,BM∥PC,和E是AB的中點(diǎn),D、E、R三點(diǎn)共線,求證△AEQ≌△BEM.同理△AED≌△REB.再求證△RBM∽△RCP,利用其對(duì)應(yīng)邊成比例即可證明結(jié)論.
(2)如圖3,當(dāng)點(diǎn)F為BC的中點(diǎn)時(shí),PF=2AP不成立.作BN∥AF,交RD于點(diǎn)N.根據(jù)△RBN∽R(shí)FP.利用F是BC的中點(diǎn),RB=BC,可得$\frac{BN}{PF}=\frac{RB}{RF}$=$\frac{2}{3}$,又利用AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.求證△BNE≌△APE即可.
解答 (1)證明:延長(zhǎng)DE,CB相交于點(diǎn)R,作BM∥PC.如圖1所示:![]()
∵AQ∥PC,BM∥PC,
∴MB∥AQ.
∴∠AQE=∠EMB.
∵E是AB的中點(diǎn),D、E、R三點(diǎn)共線,
∴AE=EB,∠AEQ=∠BEM.
∴△AEQ≌△BEM.
∴AQ=BM.
同理△AED≌△REB.
∴AD=BR=BC
∵BM∥PC,
∴△RBM∽△RCP,
相似比是$\frac{1}{2}$.![]()
PC=2MB=2AQ.
(2)解:當(dāng)點(diǎn)F為BC的中點(diǎn)時(shí),AP=$\frac{2}{3}$PF.理由如下:
作BN∥AF,交RD于點(diǎn)N.如圖2所示;
則△RBN∽R(shí)FP.
∵F是BC的中點(diǎn),
由(1)得:RB=BC,
∴RB=$\frac{2}{3}$RF.
∴$\frac{BN}{PF}=\frac{RB}{RF}$=$\frac{2}{3}$,
又AE=BE,∠NEB=∠PEA,∠NBE=∠PAE.
∴△BNE≌△APE,
∴AP=BN.
∴AP=BN=$\frac{2}{3}$PF.
點(diǎn)評(píng) 此題主要考查相似三角形的判定與性質(zhì),平行四邊的判定與性質(zhì),全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),難度較大,是一道中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com