分析 (1)先根據(jù)勾股定理,求得Rt△ABC中的AC邊的平方,進而得到以AC為一邊的正方形的面積;
(2)根據(jù)勾股定理可得,AC的長為無理數(shù)$\sqrt{5}$,再根據(jù)$\sqrt{4}$<$\sqrt{5}$<$\sqrt{9}$求得其整數(shù)部分即可.
解答 解:(1)∵Rt△ABC中,AB=2,BC=1,
∴AC2=AB2+BC2=4+1=5,
∴以AC為一邊的正方形的面積為5;
(2)∵AC=$\sqrt{5}$,
∴AC的長是無理數(shù),
又∵$\sqrt{4}$<$\sqrt{5}$<$\sqrt{9}$,
∴2<$\sqrt{5}$<3,
∴$\sqrt{5}$的整數(shù)部分為2.
點評 本題主要考查了勾股定理的應(yīng)用以及無理數(shù)的定義,解決問題的關(guān)鍵是掌握:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.解題時注意:無限不循環(huán)小數(shù)叫做無理數(shù).
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com