分析 (1)由AD2=AE•AC,易證得△ADC∽△AED,即可得∠ACD=∠ADE,又由DE∥BC,易證得∠ECD=∠B,則可證得△BCD∽△CDE;
(2)由△BCD∽△CDE,根據(jù)相似三角形的對應(yīng)邊成比例,即可得$\frac{CD}{BC}$=$\frac{DE}{CD}$,又由DE∥BC,可得△ADE∽△ABC,即可得$\frac{AD}{AB}=\frac{DE}{BC}$,繼而得到結(jié)論.
解答 證明:(1)∵AD2=AE•AC,
∴$\frac{AD}{AE}=\frac{AC}{AD}$,
∵∠A是公共角,
∴△ADC∽△AED,
∴∠ACD=∠ADE,
∵DE∥BC,
∴∠ADE=∠B,∠BCD=∠CDE,
∴∠ECD=∠B,
∴△BCD∽△CDE;
(2)∵△BCD∽△CDE,
∴$\frac{CD}{BC}$=$\frac{DE}{CD}$,
∴DE=$\frac{C{D}^{2}}{BC}$,
∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AD}{AB}=\frac{DE}{BC}$,
∴$\frac{C{D}^{2}}{B{C}^{2}}$=$\frac{AD}{AB}$.
點評 此題考查了相似三角形的判定與性質(zhì)以及平行線的性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年吉林省七年級下學(xué)期期中數(shù)學(xué)模擬試卷(四)(解析版) 題型:單選題
下列方程是二元一次方程的是( )
A. 2x+y=z-3 B. xy=5 C.
+5=3y D. x=y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com