分析 (1)根據(jù)正方形的性質(zhì)得到∠ACB=∠ACD=45°,根據(jù)余角 的性質(zhì)得到∠AEB=∠BFC,于是得到結(jié)論;
(2)過(guò)C作CK⊥BM于K,得到∠BKC=90°,推出四邊形ABCD是正方形,根據(jù)正方形的性質(zhì)得到AB=BC,∠ABC=∠BCD=90°,得到∠ABH=∠BCK,在△ABH根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(3)過(guò)E作EN⊥CK于N,得到四邊形HENK是矩形,根據(jù)矩形的性質(zhì)得到HK=EN=BH,∠BHE=∠NEC,根據(jù)全等三角形的性質(zhì)得到HE=CN=NK=1,求得CK=BH=2,得到BM=6,連接CH,根據(jù)全等三角形的性質(zhì)得到BH=DM=2,∠BHC=∠DMC=135°.求得∠DMB=90°,于是得到結(jié)論.
解答 (1)證明:∵四邊形ABCD是正方形,
∴∠ABC=∠BCD=90°,
∴∠ACB=∠ACD=45°,
∵AE⊥BF,
∴∠AEB+∠FBC=90°,
∵∠FBC+∠BFC=90°
∴∠AEB=∠BFC,
∵∠AGF=∠BFC+∠ACF,
∴∠AGF=∠AEB+45°;
(2)解:過(guò)C作CK⊥BM于K,
∴∠BKC=90°,
∵∠BMC=45°,
∴CK=MK,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠ABH=∠BCK,
在△ABH與△BCK中,$\left\{\begin{array}{l}{∠ABH=∠BCK}\\{∠AHB=∠BKC=90°}\\{AB=BC}\end{array}\right.$,
∴△ABH≌△BCK,
∴BH=CK=MK,AH=BK,
∴BM=BK+MK=AH+BH;
(3)解:由(2)得,BH=CK=BH,
∵H為BM的三等分點(diǎn),
∴BH=HK=KM,
過(guò)E作EN⊥CK于N,
∴四邊形HENK是矩形,
∴HK=EN=BH,∠BHE=∠NEC,
在△BHE與△ENC中,$\left\{\begin{array}{l}{∠HBE=∠NEC}\\{BH=EN}\\{∠BHE=∠ENC}\end{array}\right.$,
∴△BHE≌△ENC,
∴HE=CN=NK=1,
∴CK=BH=2,
∴BM=6,![]()
連接CH,
∵HK=MK,CK⊥MH,∠BMC=45°,
∴CH=CM,∠MCH=90°,
∴∠BCH=∠DCM,
在△BHC與△DMC中,$\left\{\begin{array}{l}{CH=CM}\\{∠BCH=∠DCM}\\{BC=CD}\end{array}\right.$,
∴△BHC≌△DMC,
∴BH=DM=2,∠BHC=∠DMC=135°
∴∠DMB=90°,
∴△BDM的面積=6.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),矩形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com