分析 類比:根據(jù)∠DBE=∠ABC=90°,得出∠ABE=∠DBC,再證出△AEB≌△CDB,AE=CD,∠EAB=∠DCB,再根據(jù)∠DCB+∠COB=90°,∠AOF=∠COB,得出∠FOA+∠FAO=90°,∠AFC=90°,即可證出AE⊥CD;
拓展:①根據(jù)∠DBE=∠ABC=α,于是得到∠ABE=∠DBC,推出△AEB≌△CDB,即可得到結(jié)論;
②通過(guò)△AEB≌△CDB,根據(jù)全等三角形的性質(zhì)得到∠EAB=∠DCB,由對(duì)頂角相等得到∠AHF=∠CHB,于是得到∠AFH=∠ABC=α.
解答 解:類比:AE=CD,AE⊥CD,
證明:∠DBE=∠ABC=90°,
∴∠ABE=∠DBC,
在△AEB和△CDB中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠DBC}\\{BE=BD}\end{array}\right.$,
∴△AEB≌△CDB,
∴AE=CD,∠EAB=∠DCB,
∵∠DCB+∠COB=90°,∠AOF=∠COB,
∴∠FOA+∠FAO=90°,
∴∠AFC=90°,
∴AE⊥CD;![]()
拓展:①AE=CD,
∵∠DBE=∠ABC=α,
∴∠ABE=∠DBC,
在△AEB和△CDB中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠DBC}\\{BE=BD}\end{array}\right.$,
∴△AEB≌△CDB,
∴AE=CD;
②線段AE,CD的位置關(guān)系發(fā)生改變,其所在直線的夾角大小不隨著圖形的旋轉(zhuǎn)而發(fā)生變化,
∵△AEB≌△CDB,
∴∠EAB=∠DCB,
∵∠AHF=∠CHB,
∴∠AFH=∠ABC=α,
∴線段AE,CD的位置關(guān)系發(fā)生改變,其所在直線的夾角大小不隨著圖形的旋轉(zhuǎn)而發(fā)生變化.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),用到的知識(shí)點(diǎn)全等三角形的判定與性質(zhì),關(guān)鍵是能在較復(fù)雜的圖形中找出全等的三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 三棱柱 | B. | 長(zhǎng)方體 | C. | 圓柱 | D. | 球 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=3x2+4 | B. | y=-$\frac{1}{3}{x^2}$ | C. | y=(x+1)(x-2) | D. | y=$\sqrt{x^2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 0 | C. | -2 | D. | -4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com