分析 先根據(jù)垂直的定義得出∠BEH=∠HDC=90°,由三角形外角的性質(zhì)得出∠EBH與∠DCH的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠HBC+∠HCB的度數(shù),進(jìn)而可得出∠ABC+∠ACB的度數(shù),由此可得出結(jié)論.
解答 解:∵BD⊥AC,CE⊥AB,
∴∠BEH=∠HDC=90°.
∵∠BHC=110°,
∴∠EBH=∠DCH=110°-90°=20°,∠HBC+∠HCB=180°-110°=70°,
∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,
∴∠A=180°-110°=70°.
故答案為:70°.
點(diǎn)評(píng) 本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 1號(hào)零件 | 2號(hào)零件 | 3號(hào)零件 | 4號(hào)零件 | 5號(hào)零件 | 6號(hào)零件 |
| 0.2 | -0.1 | -0.3 | 0.1 | 0 | -0.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com