| A. | (0,3) | B. | (0,$\frac{4}{3}$) | C. | (0,$\frac{8}{3}$) | D. | (0,$\frac{7}{3}$) |
分析 過C作CD⊥AB于D,先求出A,B的坐標(biāo),分別為A(8,0),B(0,6),得到AB的長(zhǎng),再根據(jù)折疊的性質(zhì)得到AC平分∠OAB,得到CD=CO=n,DA=OA=8,則DB=10-8=2,BC=6-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.
解答
解:過C作CD⊥AB于D,如圖,
對(duì)于直線y=-$\frac{3}{4}$x+6,
當(dāng)x=0,得y=6;當(dāng)y=0,x=8,
∴A(8,0),B(0,6),即OA=8,OB=6,
∴AB=10,
又∵坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x軸上,
∴AC平分∠OAB,
∴CD=CO=n,則BC=6-n,
∴DA=OA=8,
∴DB=10-8=2,
在Rt△BCD中,DC2+BD2=BC2,
∴n2+22=(6-n)2,解得n=$\frac{8}{3}$,
∴點(diǎn)C的坐標(biāo)為(0,$\frac{8}{3}$).
故選:C.
點(diǎn)評(píng) 本題考查了求直線與坐標(biāo)軸交點(diǎn)的坐標(biāo)的方法:分別令x=0或y=0,求對(duì)應(yīng)的y或x的值;也考查了折疊的性質(zhì)和勾股定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10 | B. | 4 | C. | 4或-6 | D. | 4或-6或10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{8}$ | B. | $\sqrt{10}$ | C. | $\sqrt{20}$ | D. | $\sqrt{\frac{1}{3}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5元 | B. | 10元 | C. | 12.5元 | D. | 15元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 如果-2x>-2,那么x>1 | B. | 如果a2=b2,那么a3=b3 | ||
| C. | 面積相等的三角形全等 | D. | 如果a∥b,b∥c,那么a∥c |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com