欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.如圖,AB是⊙O的直徑,C是弧BD的中點(diǎn),CE⊥AB,垂足為E,BD交CE于點(diǎn)F.
(1)求證:CF=BF;
(2)若BE=4,EF=3,求⊙O的半徑.

分析 (1)連AC,由AB是⊙O的直徑,則∠ACB=90°,而CE⊥AB,所以∠BAC=∠BCE;由C是弧BD的中點(diǎn),得到∠DBC=∠BAC,于是∠BCE=∠DBC,即可得到CF=BF.
(2)由勾股定理得BF=CF=5,則CE=8,由相似三角形性質(zhì)得CE2=BE•AB,代入求出AB的值,得出半徑.

解答 (1)證明:連接AC,如圖,
∵C是弧BD的中點(diǎn),
∴∠DBC=∠BAC,
在ABC中,∠ACB=90°,CE⊥AB,
∴∠BCE+∠ECA=∠BAC+∠ECA=90°,
∴∠BCE=∠BAC,
又C是弧BD的中點(diǎn),
∴∠DBC=∠CDB,
∴∠BCE=∠DBC,
∴CF=BF.

(2)解:∵BE=4,EF=3,
∴BF=$\sqrt{{3}^{2}{+4}^{2}}$=5,
∴CF=5,
∴CE=8,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴CE2=BE•AB,
∴AB=$\frac{{CE}^{2}}{BE}$=$\frac{64}{4}$=16,
∴AO=8,
∴圓O的半徑為8.

點(diǎn)評(píng) 本題主要考查了圓周角定理,勾股定理,相似三角形的性質(zhì)等,利用圓周角定理和相似三角形的性質(zhì)是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在?BFDE中,分別延長(zhǎng)DF到C、BE到A,使得DF=FC、BE=EA.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB于D,EH⊥AB于H,CD交BE于F.求證:
(1)CE=CF;
(2)四邊形CEHF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.解方程:
(1)x2-12x-4=0(用配方法解);     
(2)(2x-5)2-(x+4)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.閱讀下面例題的解答過程,體會(huì)并其方法,并借鑒例題的解法解方程.
例:解方程x2-|x-1|-1=0.
解:(1)當(dāng)x-1≥0即x≥1時(shí),|x-1|=x-1.
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1=0.x2=1
∵x≥1,故x=0舍去,
∴x=1是原方程的解.
(2)當(dāng)x-1<0即x<1時(shí),|x-1|=-(x-1).
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1=1.x2=-2
∵x<1,故x=1舍去,
∴x=-2是原方程的解.
綜上所述,原方程的解為x1=1,x2=-2
解方程x2-|x-2|-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.探索題
閱讀下列解題過程:
$\frac{1}{{\sqrt{5}+\sqrt{4}}}=\frac{{1•({\sqrt{5}-\sqrt{4}\left.{\;})}\right.}}{{({\sqrt{5}+\sqrt{4}\left.{\;})}\right.({\sqrt{5}-\sqrt{4}\left.{\;})}\right.}}=\frac{{\sqrt{5}-\sqrt{4}}}{{{{(\sqrt{5})}^2}-{{(\sqrt{4})}^2}}}=\sqrt{5}-\sqrt{4}=\sqrt{5}-2$
$\frac{1}{{\sqrt{6}+\sqrt{5}}}=\frac{{1•(\sqrt{6}-\sqrt{5})}}{{(\sqrt{6}+\sqrt{5)(\sqrt{6}-\sqrt{5)}}}}=\frac{{\sqrt{6}-\sqrt{5}}}{{{{(\sqrt{6})}^2}-(\sqrt{5})^2}}=\sqrt{6}-\sqrt{5}$
請(qǐng)回答下列問題:
(1)觀察上面的解題過程,請(qǐng)直接寫出$\frac{1}{{\sqrt{n}-\sqrt{n-1}}}$的結(jié)果為$\sqrt{n}$+$\sqrt{n-1}$;
(2)利用上面所提供的解法,請(qǐng)化簡(jiǎn):$\frac{1}{{1+\sqrt{2}}}+\frac{1}{{\sqrt{2}+\sqrt{3}}}+\frac{1}{{\sqrt{3}+\sqrt{4}}}+…+\frac{1}{{\sqrt{98}+\sqrt{99}}}+\frac{1}{{\sqrt{99}+\sqrt{100}}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),①當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)Q在射線CD的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2
(2)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說明理由.
(3)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問幾秒后,△PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.一船以每小時(shí)36海里的速度向正北航行到A處,發(fā)現(xiàn)它的北偏東30°方向上有一燈塔B,船繼續(xù)向北航行40分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在北偏東60°方向上,求此船與燈塔的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案