| A. | △AEE′是等腰直角三角形 | B. | AF垂直平分EE' | ||
| C. | △E′EC∽△AFD | D. | △AE′F是等腰三角形 |
分析 由旋轉(zhuǎn)的性質(zhì)得到AE′=AE,∠E′AE=90°,于是得到△AEE′是等腰直角三角形,故A正確;由旋轉(zhuǎn)的性質(zhì)得到∠E′AD=∠BAE,由正方形的性質(zhì)得到∠DAB=90°,推出∠E′AF=∠EAF,于是得到AF垂直平分EE',故B正確;根據(jù)余角的性質(zhì)得到∠FE′E=∠DAF,于是得到△E′EC∽△AFD,故C正確;由于AD⊥E′F,但∠E′AD不一定等于∠DAE′,于是得到△AE′F不一定是等腰三角形,故D錯(cuò)誤.
解答 解:∵將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,
∴AE′=AE,∠E′AE=90°,![]()
∴△AEE′是等腰直角三角形,故A正確;
∵將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,
∴∠E′AD=∠BAE,
∵四邊形ABCD是正方形,
∴∠DAB=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠E′AD+∠FAD=45°,
∴∠E′AF=∠EAF,
∵AE′=AE,
∴AF垂直平分EE',故B正確;
∵AF⊥E′E,∠ADF=90°,
∴∠FE′E+∠AFD=∠AFD+∠DAF,
∴∠FE′E=∠DAF,
∴△E′EC∽△AFD,故C正確;
∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,
∴△AE′F不一定是等腰三角形,故D錯(cuò)誤;
故選D.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),相似三角形的判定,等腰直角三角形的判定,線段垂直平分線的判定,正確的識(shí)別圖形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| 甲 | 乙 | 丙 | 丁 | |
| 平均數(shù)(cm) | 180 | 185 | 185 | 180 |
| 方差 | 3.6 | 3.6 | 7.4 | 8.1 |
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com