分析 (1)由于平行四邊形的對(duì)角相等,只需求得∠DAO的度數(shù)即可,在Rt△OAD中,根據(jù)A、D的坐標(biāo),可得到OA、OD的長(zhǎng),那么∠DAO的度數(shù)就不難求了.
(2)根據(jù)點(diǎn)E、F的坐標(biāo)求得直線EF的方程,然后將點(diǎn)G的縱坐標(biāo)代入該直線方程即可求得點(diǎn)G的橫坐標(biāo).
(3)根據(jù)A、D的坐標(biāo),易求得E點(diǎn)坐標(biāo),即可得到AE、OE的長(zhǎng),由此可判定△AOE是等邊三角形,那么∠OEA=∠AOE=∠EOF′=60°,由此可推出OF′∥AE,即∠DEH=∠OF′E,根據(jù)軸對(duì)稱的性質(zhì)知∠OF′E=∠EFA,通過等量代換可得∠EFA=∠DGE=∠DEH,由此可證得所求的三角形相似.
解答 解:(1)在Rt△AOD中,
∵tan∠DAO=$\frac{DO}{AO}$=$\frac{2\sqrt{3}}{2}$=$\sqrt{3}$,
∴∠DAB=60°,
∵四邊形ABCD是平行四邊形,
∴∠DCB=∠DAB=60°.
(2)∵四邊形ABCD是平行四邊形,
∴CD∥AB,
∴∠DGE=∠AFE,
又∵∠DEG=∠AEF,DE=AE,
∴△DEG≌△AEF,![]()
∴DG=AF
∵AF=OF-OA=4-2=2,
∴DG=2,
∴點(diǎn)G的坐標(biāo)為(2,2$\sqrt{3}$),
(3)∵CD∥AB,
∴∠DGE=∠OFE,
∵△OEF經(jīng)軸對(duì)稱變換后得到△OEF′,
∴∠OFE=∠OF′E,
∴∠DGE=∠OF′E,
在Rt△AOD中,∵E是AD的中點(diǎn),
∴OE=$\frac{1}{2}$AD=AE
又∵∠EAO=60°
∴∠EOA=60°,∠AEO=60°,
又∵∠EOF'=∠EOA=60°,
∴∠EOF′=∠OEA,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEH=∠DGE,
又∵∠HDE=∠EDG,
∴△DHE∽△DEG.
點(diǎn)評(píng) 本題考查平行四邊形的性質(zhì)、軸對(duì)稱的性質(zhì)、全等三角形以及相似三角形的判定和性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=180-2x(0<x<90) | B. | y=90-x(0≤x≤90) | C. | y=180-x(0<x<90) | D. | y=90-2x(0≤x≤90) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 四邊形ACDF是平行四邊形 | |
| B. | 當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),四邊形ACDF是矩形 | |
| C. | 當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),四邊形ACDF是菱形 | |
| D. | 四邊形ACDF不可能是正方形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com