分析 (1)由已知條件得出AB=AO,AC=AG,由SAS證明△ABC≌△AOG即可;
(2)由矩形的性質(zhì)得出∠ABC=90°,AD∥BC,得出∠OAF=∠COE,由ASA證明△AOF≌△COE,得出OF=OE,得出四邊形AECF是平行四邊形,再由全等三角形的對(duì)應(yīng)角相等得出∠AOG=∠ABC=90°,即可得出結(jié)論.
解答 (1)證明:∵點(diǎn)O是AC的中點(diǎn),
∴AO=CO=$\frac{1}{2}$AC,
∵AC=2AB,BG=AB,
∴AB=AO,AC=AG,
在△ABC和△AOG中,$\left\{\begin{array}{l}{AB=AO}&{\;}\\{∠BAC=∠OAG}&{\;}\\{AC=AG}&{\;}\end{array}\right.$,
∴△ABC≌△AOG(SAS);
(2)解:四邊形AECF是菱形;理由如下:
∵四邊形ABCD是矩形,
∴∠ABC=90°,AD∥BC,
∴∠OAF=∠COE,
在△AOF和△COE中,$\left\{\begin{array}{l}{∠OAF=∠OCE}&{\;}\\{AO=CO}&{\;}\\{∠AOF=∠COE}&{\;}\end{array}\right.$,
∴△AOF≌△COE(ASA),
∴OF=OE,
∴四邊形AECF是平行四邊形,
∵△ABC≌△AOG,
∴∠AOG=∠ABC=90°,
∴AC⊥EF,
∴四邊形AECF是菱形.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、菱形的判定;熟練掌握矩形的性質(zhì),并能進(jìn)行推理論證是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4}{25}$ | B. | $\frac{1}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com