分析 根據(jù)等邊三角形三線合一的性質(zhì)可得D為BC的中點(diǎn),即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長,即可解題.
解答 解:∵AD⊥BC,由等邊三角形三線合一,
∴D為BC的中點(diǎn),
∴BD=DC=2,
在Rt△ABD中,AB=4,BD=2,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=2$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}×$4×2$\sqrt{3}$=4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì),勾股定理三角形的面積的計(jì)算,熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a-b | B. | b | C. | -b | D. | -2a+b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2.8(1+x)2=6.6 | B. | 2.8(1+2x)=6.6 | ||
| C. | 2.8(1+x)+2.8(1+2x)=6.6 | D. | 2.8(1+x)+2.8(1+x)2=6.6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com