分析 連接OB,OA,根據(jù)圓周角定理得出∠AOD的度數(shù),再根據(jù)弦AB⊥CD,得到OA,OE的長,然后根據(jù)圖形的面積公式即可得到結(jié)論.
解答
解:連接OA,OB,
∵∠C=22.5°,
∴∠AOD=45°,
∵AB⊥CD,
∴∠AOB=90°,
∴OE=$\frac{1}{2}$AB=3,OA=OB=$\frac{\sqrt{2}}{2}$AB=3$\sqrt{2}$,
∴S陰影=S扇形-S△AOB=$\frac{90•π×(3\sqrt{2})^{2}}{360}$-$\frac{1}{2}×$6×3=$\frac{9}{2}$π-9,
故答案為:$\frac{9}{2}$π-9.
點評 本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 90° | C. | 120° | D. | 180° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 尺規(guī)作圖:過直線外一點作已知直線的平行線. 已知:直線l及其外一點A. 求作:l的平行線,使它經(jīng)過點A. |
| (1)在直線l上任取一點B; (2)以B為圓心,BA長為半徑作弧,交直線l于點C; (3)分別以A、C為圓心,BA長為半徑作弧,兩弧相交于點D; (4)作直線AD. 直線AD即為所求. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | 3 | D. | 6 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com