分析 (1)設(shè)y+2=k(2x+12),即y=2kx+12k-2,將x、y的值代入,求解得出k的值即可;
(2)當(dāng)y=1時(shí)可得關(guān)于x的方程,解之即可.
解答 解:(1)設(shè)y+2=k(2x+12),即y=2kx+12k-2,
將x=3、y=5代入,得:6k+12k-2=5,
解得:k=$\frac{7}{18}$,
∴y與x之間的函數(shù)關(guān)系式為y=$\frac{7}{9}$x+$\frac{8}{3}$;
(2)當(dāng)y=1時(shí),得:$\frac{7}{9}$x+$\frac{8}{3}$=1,
解得:x=-$\frac{15}{7}$.
點(diǎn)評 本題主要考查待定系數(shù)法求函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式一般步驟是:
(1)先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時(shí),先設(shè)y=kx+b;
(2)將自變量x的值及與它對應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;
(3)解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫出函數(shù)解析式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com