分析 (1)根據(jù)被開方數(shù)和絕對(duì)值大于等于0列式求出b和n,從而得到A、B的坐標(biāo),再根據(jù)向上平移4個(gè)單位,則縱坐標(biāo)加4,向右平移3個(gè)單位,則橫坐標(biāo)加3,求出點(diǎn)C、D的坐標(biāo)即可;
(2)然后利用平行四邊形的面積公式,列式計(jì)算;
(3)根據(jù)平移的性質(zhì)可得AB∥CD,再過(guò)點(diǎn)P作PE∥AB,根據(jù)平行公理可得PE∥CD,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DCP=∠CPE,∠BOP=∠OPE,即可得出結(jié)論.
解答 解:(1)由題意得,a+2=0,a=-2,則A(-2,0),
5-n=0,n=5,則B(5,0),
∵點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移3個(gè)單位,
∴點(diǎn)C(1,4),D(8,4);
故答案為:-2,0;5,0;1,4;8,4;![]()
(2)∵OB=5,CD=8-1=7,
∴S四邊形OBDC=$\frac{1}{2}$(CD+OB)×h=$\frac{1}{2}$×4×(5+7)=24;
(3)∠OPC=∠DCP+∠BOP;理由如下:
由平移的性質(zhì)得:四邊形ABDC是平行四邊形,
∴AB∥CD,過(guò)點(diǎn)P作PE∥AB,交AC于E,如圖所示:
則PE∥CD,
∴∠DCP=∠CPE,∠BOP=∠OPE,
∴∠OPC=∠CPE+∠OPE=∠DCP+∠BOP.
點(diǎn)評(píng) 本題是四邊形綜合題目,考查了平移的性質(zhì)、平行四邊形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、平行線的性質(zhì)等知識(shí);本題綜合性強(qiáng),難度適中.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | 3.1415926 | C. | $\sqrt{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com