分析 利用極端原理求解:①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=34,即BP的最大值為4;根據(jù)上述兩種情況即可得到BP的取值范圍.
解答
解:如圖:
①當(dāng)F、D重合時,BP的值最小;
根據(jù)折疊的性質(zhì)知:AF=PF=10;
在Rt△PFC中,PF=10,F(xiàn)C=6,則PC=8;
∴BP=xmin=10-8=2;
②當(dāng)E、B重合時,BP的值最大;根據(jù)折疊的性質(zhì)即可得到AB=BP=6,即BP的最大值為6.
故答案為:2≤x≤6.
點評 此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 如果a<b,那么a-c<b-c | B. | 如果a>b,c>0,那么ac>bc | ||
| C. | 如果m<n,p<0,那么$\frac{m}{p}$>$\frac{n}{p}$ | D. | 如果x>y,z<0,那么xz>yz |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1cm,2cm,4cm | B. | 4cm,5cm,9cm | C. | 5cm,8cm,15cm | D. | 6cm,8cm,9cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com