分析 (1)根據(jù)正方形的性質(zhì)對(duì)角線垂直且平分,得到OB=OA,又因?yàn)锳M⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,從而求證出Rt△BOE≌Rt△AOF,得到OE=OF.
(2)根據(jù)第一步得到的結(jié)果以及正方形的性質(zhì)得到OB=OA,再根據(jù)已知條件求證出Rt△BOE≌Rt△AOF,得到OE=OF.
(3)如圖3,同理可得OE=OF.
解答 (1)證明:∵四邊形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴△BOE≌△AOF.
∴OE=OF.
(2)解:OE=OF成立.
證明:∵四邊形ABCD是正方形,![]()
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∵∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴△BOE≌△AOF.
∴OE=OF.
(3)解:OE=OF成立.
證明:∵四邊形ABCD是正方形,![]()
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MAM=90°,
∵∠F+∠OAF=90°,
又∵∠MAM=∠OAF,
∴∠F=∠E.
∴△BOE≌△AOF.
∴OE=OF.
點(diǎn)評(píng) 本題是四邊形的綜合題,考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定,并運(yùn)用了類比的思想,三個(gè)問(wèn)題都是證明△BOE≌△AOF解決問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 調(diào)查春節(jié)聯(lián)歡晚會(huì)的收視率 | |
| B. | 選出某校短跑最快的學(xué)生參加全區(qū)比賽 | |
| C. | 檢測(cè)某批次火柴的質(zhì)量 | |
| D. | 鞋廠檢測(cè)生產(chǎn)的鞋底能承受的彎折次數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 25 | B. | 30 | C. | 35 | D. | 40 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 星期六 | 星期日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com