分析 延長CD到E,使DE=BC,連接AE,過點A作AF⊥CD于點F,根據SAS可證明△ABC≌△ADE,得出AC=AE,再證明△ACE是等邊三角形,求出高AF的值,由△ABC≌△ADE,得到S四邊形ABCD=S△ACE=即可解答.
解答 解:如圖,延長CD到E,使DE=BC,連接AE,過點A作AF⊥CD于點F,![]()
∵∠B+∠ADC=180°,∠ADE+∠ADC=180°,
∴∠B=∠ADE,
在△ABC和△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠B=∠ADE}\\{BC=DE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴AC=AE=1,∠BAC=∠DAE,
∵∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=60°,
∴△ACE是等邊三角形,
∵∠ACD=60°,
∴AF=AC•sin60°=1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴S四邊形ABCD=S△ACE=$\frac{1}{2}×1×\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}$.
點評 本題考查了全等三角形的性質與判定,解決本題的關鍵是作出輔助線,證明△ABC≌△ADE.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com