分析 由圓周角定理得出∠ACB=90°,在Rt△ACB中運用三角函數(shù)求出BC=3,再由勾股定理求出AC=4,得出cos∠CAB=$\frac{AC}{AB}$=$\frac{4}{5}$,根據(jù)切線的性質(zhì)得到∠ABF=90°,然后在Rt△ABF中運用三角函數(shù)求出AF=$\frac{25}{4}$,即可求出CF的長.
解答 解:∵AB為直徑,
∴∠ACB=90°,
在Rt△ACB中,sin∠CAB=$\frac{BC}{AB}$=$\frac{3}{5}$,AB=5,
∴BC=3,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=4,
∴cos∠CAB=$\frac{AC}{AB}$=$\frac{4}{5}$,
∵BF為⊙O的切線,
∴AB⊥BF,
∴∠ABF=90°,
在Rt△ABF中,cos∠CAB=$\frac{AB}{AF}$=$\frac{4}{5}$,
∴AF=$\frac{5}{4}$×5=$\frac{25}{4}$,
∴CF=AF-AC=$\frac{25}{4}$-4=$\frac{9}{4}$.
點評 本題考查了切線的性質(zhì)、圓周角定理、三角函數(shù)、勾股定理;熟練掌握切線的性質(zhì),并能進行推理論證與計算是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{180}{x}-\frac{200}{(1-25%)x}$=30 | B. | $\frac{180}{x}-\frac{200}{(1-25%)x}=\frac{30}{60}$ | ||
| C. | $\frac{180}{x}-\frac{200}{(1+25%)x}=30$ | D. | $\frac{180}{x}-\frac{200}{(1+25%)x}=\frac{30}{60}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com