分析 (1)①利用角平分線的定義和四邊形的內(nèi)角和以及α+β=150°推導即可;②利用角平分線的定義和四邊形的內(nèi)角和以及α+β=200°推導即可;
(2)①利用角平分線的定義和四邊形的內(nèi)角和以及三角形的內(nèi)角和轉(zhuǎn)化即可;②利用角平分線的定義和四邊形的內(nèi)角和以及三角形的外角的性質(zhì)計算即可.
解答 解:(1)①在四邊形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,
∴∠ABC+∠ADC=360°-(α+β),
∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°
∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,
∵α=50°,β=100°,
∴∠MBC+∠NDC=150,
故答案為:150°;
②在四邊形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,
∴∠ABC+∠ADC=360°-(α+β),
∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°
∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,
∵α+β=200°,
∴∠MBC+∠NDC=200°,
故答案為:200;
(2)①如圖1,連接BD,![]()
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分別平分四邊形的外角∠MBC和∠NDC,
∴∠CBG=$\frac{1}{2}$∠MBC,∠CDG=$\frac{1}{2}$∠NDC,
∴∠CBG+∠CDG=$\frac{1}{2}$∠MBC+$\frac{1}{2}$∠NDC=$\frac{1}{2}$(∠MBC+∠NDC)=$\frac{1}{2}$(α+β),
②如圖2,延長BC交DF于H,![]()
由(1)有,∠MBC+∠NDC=α+β,
∵BE、DF分別平分四邊形的外角∠MBC和∠NDC,
∴∠CBE=$\frac{1}{2}$∠MBC,∠CDH=$\frac{1}{2}$∠NDC,
∴∠CBE+∠CDH=$\frac{1}{2}$∠MBC+$\frac{1}{2}$∠NDC=$\frac{1}{2}$(∠MBC+∠NDC)=$\frac{1}{2}$(α+β),
∵BE∥DF,
∴∠DHC=∠EBC=$\frac{1}{2}$α,
∵∠BCD=∠CDH+∠DHB,
∴∠CDH=∠BCD-∠DHB=β-∠DHB,
∴$\frac{1}{2}$α+β-$\frac{1}{2}$α=$\frac{1}{2}$(α+β),
∴α=β.
點評 此題是三角形綜合題,主要考查了平角的意義,四邊形的內(nèi)角和,三角形內(nèi)角和,三角形的外角的性質(zhì),角平分線的意義,用整體代換的思想是解本題的關鍵,整體思想是初中階段的一種重要思想,要多加強訓練.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com