分析 (1)先根據(jù)SSS證明△ABC≌△ADC得∠BAC=∠DAC,則△ABF≌△ADF,再由對(duì)頂角相等可得結(jié)論;
(2)根據(jù)平行得內(nèi)錯(cuò)角∠BAC=∠ACD,再由(1)的結(jié)論∠BAC=∠DAC,可證得AD=CD,則四邊相等,四邊形ABCD是菱形;
(3)當(dāng)EB⊥CD時(shí),∠EFD=∠BCD,理由是:證明△BCF≌△DCF,得∠CBF=∠CDF,則直角△EFD和直角△AEC有兩個(gè)角對(duì)應(yīng)相等,則∠EFD=∠BCD.
解答 證明:(1)在△ABC和△ADC中,
∵$\left\{\begin{array}{l}{AB=AD}\\{BC=DC}\\{AC=AC}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
又∵AF=AF
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵∠AFB=∠CFE,
∴∠AFD=∠CFE;
(2)∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四邊形ABCD是菱形;
(3)解:當(dāng)EB⊥CD時(shí),∠EFD=∠BCD,
理由:∵四邊形ABCD為菱形,
∴BC=CD,∠BCF=∠DCF,
∴△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
點(diǎn)評(píng) 本題是四邊形的綜合題,考查了菱形、全等三角形的性質(zhì)和判定;菱形常用的判定方法是:四邊相等四邊形是菱形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 進(jìn)球數(shù)(個(gè)) | 人數(shù) |
| 0 | 1 |
| 1 | 2 |
| 2 | x |
| 3 | y |
| 4 | 4 |
| 5 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com