欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a,AD:DE=4:1,寫出求DE長(zhǎng)的思路.

分析 (1)連接OD,直接利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進(jìn)而得出答案;
(2)首先證明證明△ABC是等腰直角三角形;其次其次AC的長(zhǎng);再證明ACD∽△AEC,得到AC2=AD•AE;最后由相似三角形的性質(zhì)即可求出DE的長(zhǎng).

解答 解:(1)證明:連接OD.
∵OD=CD,
∴∠ODC=∠OCD.
∵AC為⊙O的直徑,
∴∠ADC=∠EDC=90°.
∵點(diǎn)F為CE的中點(diǎn),
∴DF=CF.
∴∠FDC=∠FCD.
∴∠FDO=∠FCO.
又∵AC⊥CE,
∴∠FDO=∠FCO=90°.
∴DF是⊙O的切線;                     
(2)①由DB平分∠ADC,AC為⊙O的直徑,證明△ABC是等腰直角三角形;
②由AB=a,求出AC的長(zhǎng)度為$\sqrt{2}a$;
③由∠ACE=∠ADC=90°,∠CAE是公共角,證明△ACD∽△AEC,得到AC2=AD•AE;
④設(shè)DE為x,由AD:DE=4:1,求出DE=$\frac{\sqrt{10}}{10}$a.
解:∵DB平分∠ADC,
∴∠ADB=∠CDB,
∴∠BAC=∠BCA,
∴AB=BC,
∵AC為⊙O的直徑,
∴∠ABC=90°,
∴△ABC是等腰直角三角形,
∵AB=a,
∴AC=$\sqrt{2}$a,
∵∠ACE=∠ADC=90°,∠CAE是公共角,
∴△ACD∽△AEC,
∴AC:AE=AD:AC,
∴AC2=AD•AE,
設(shè)DE為x,
∵AD:DE=4:1,
∴AD=4x,
∴($\sqrt{2}$a)2=20x2,
解得x=$\frac{\sqrt{10}}{10}$a.
即DE=$\frac{\sqrt{10}}{10}$a.

點(diǎn)評(píng) 此題主要考查了圓的切線的判定以及性質(zhì)、相似三角形的判定與性質(zhì)、圓周角定理、等腰三角形的判斷和性質(zhì)、勾股定理等知識(shí),結(jié)合圓的性質(zhì)和已知條件證明△ACD∽△AEC是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,C是線段AB的中點(diǎn),CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求證:△ACD≌△BCE;
(2)若∠D=53°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題是真命題的是( 。
A.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形
B.對(duì)角線互相垂直的平行四邊形是矩形
C.四條邊相等的四邊形是菱形
D.對(duì)角線相等的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(8,0)與點(diǎn)B(6,8),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC;
①求點(diǎn)D的坐標(biāo);
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=$\frac{1}{3}$∠MFO時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD各邊都平行于坐標(biāo)軸,且A(-2,2),C(3,-2).對(duì)矩形ABCD及其內(nèi)部的點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫坐標(biāo)乘以a,縱坐標(biāo)乘以b,將得到的點(diǎn)再向右平移k(k>0)個(gè)單位,得到矩形A′B′C′D′及其內(nèi)部的點(diǎn)(A′B′C′D′分別與ABCD對(duì)應(yīng)).E(2,1)經(jīng)過上述操作后的對(duì)應(yīng)點(diǎn)記為E′.
(1)點(diǎn)D的坐標(biāo)為,若a=2,b=-3,k=2,則點(diǎn)D′的坐標(biāo)為(8,-6);
(2)若A′(1,4),C′(6,-4),求點(diǎn)E′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.一天上午林老師來到某中學(xué)參加該校的校園開放日活動(dòng),他打算隨機(jī)聽一節(jié)九年級(jí)的課程,下表是他拿到的當(dāng)天上午九年級(jí)的課表,如果每一個(gè)班級(jí)的每一節(jié)課被聽的可能性是一樣的,那么聽數(shù)學(xué)課的可能性是$\frac{3}{16}$.
     班級(jí)
節(jié)次
1班2班3班4班
第1節(jié)語文數(shù)學(xué)外語化學(xué)
第2節(jié)數(shù)學(xué)政治物理語文
第3節(jié)物理化學(xué)體育數(shù)學(xué)
第4節(jié)外語語文政治體育

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,若∠ACO=50°,則∠B的度數(shù)為( 。
A.60°B.50°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,一次函數(shù)y=2x-2與反比例函數(shù)y=$\frac{k}{x}$的圖象相交于點(diǎn)C,E,與x軸相交于點(diǎn)D,過點(diǎn)D作DA⊥x軸交反比例函數(shù)的圖象于點(diǎn)A,過點(diǎn)C作CB⊥x軸于點(diǎn)B.
(1)若點(diǎn)A與點(diǎn)E關(guān)于原點(diǎn)對(duì)稱,求$\frac{CB}{AD}$的值;
(2)連接AC,若∠CAD=45°,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年福建省仙游縣郊尾、楓亭五校教研小片區(qū)七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:判斷題

AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ABC 、∠ADC的平分線交于點(diǎn)E(不與B,D點(diǎn)重合).∠ABC=n°,∠ADC=80°.

(1)若點(diǎn)B在點(diǎn)A的左側(cè),求∠BED的度數(shù)(用含n的代數(shù)式表示);

(2)將(1)中的線段BC沿DC方向平移,當(dāng)點(diǎn)B移動(dòng)到點(diǎn)A右側(cè)時(shí),請(qǐng)畫出圖形并判斷∠BED的度數(shù)是否改變.若改變,請(qǐng)求出∠BED的度數(shù)(用含n的代數(shù)式表示);若不變,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案