分析 由三角形全等的判定方法SAS、ASA、AAS,容易得出結(jié)論.
解答 解:AD=AE或CD=BE或∠B=∠C或∠ADB=∠AEC;理由如下:
若AD=AE,
在△ACE和△ABD中,$\left\{\begin{array}{l}{AC=AB}&{\;}\\{∠A=∠A}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△ACE≌△ABD(SAS);
若CD=BE,
∵AB=AC,
∴AD=AE,
同理:△ACE≌△ABD(SAS);
若∠B=∠C,
在△ACE和△ABD中,$\left\{\begin{array}{l}{∠A=∠A}&{\;}\\{AC=AB}&{\;}\\{∠C=∠B}&{\;}\end{array}\right.$,
∴△ACE≌△ABD(ASA);
若∠ADB=∠AEC,
在△ACE和△ABD中,$\left\{\begin{array}{l}{∠A=∠A}&{\;}\\{∠AEC=∠ADB}&{\;}\\{AC=AB}&{\;}\end{array}\right.$,
∴△ACE≌△ABD(AAS);
故答案為:AD=AE或CD=BE或∠B=∠C或∠ADB=∠AEC.
點(diǎn)評(píng) 本題考查了全等三角形的判定方法;本題是開放型題目,存在四種情況,熟練掌握全等三角形的判定方法是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相交 | B. | 外切 | C. | 內(nèi)切 | D. | 外離 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{12}{5}$ | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com