分析 根據(jù)和諧點(diǎn)的概念令ax2+4x+c=x,即ax2+3x+c=0,由題意,△=32-4ac=0,即4ac=9,方程的根為$\frac{-3}{2a}$=$\frac{3}{2}$,從而求得a=-1,c=-$\frac{9}{4}$,所以函數(shù)y=ax2+4x+c-$\frac{3}{4}$=-x2+4x-3,根據(jù)函數(shù)解析式求得頂點(diǎn)坐標(biāo)與縱坐標(biāo)的交點(diǎn)坐標(biāo),根據(jù)y的取值,即可確定x的取值范圍.
解答 解:令ax2+4x+c=x,即ax2+3x+c=0,
由題意,△=32-4ac=0,即4ac=9,
又方程的根為$\frac{-3}{2a}$=$\frac{3}{2}$,
解得a=-1,c=-$\frac{9}{4}$.
故函數(shù)y=ax2+4x+c-$\frac{3}{4}$=-x2+4x-3,
如圖,該函數(shù)圖象頂點(diǎn)為(2,1),與y軸交點(diǎn)為(0,-3),由對(duì)稱性,該函數(shù)圖象也經(jīng)過(guò)點(diǎn)(4,-3). ![]()
由于函數(shù)圖象在對(duì)稱軸x=2左側(cè)y隨x的增大而增大,在對(duì)稱軸右側(cè)y隨x的增大而減小,且當(dāng)0≤x≤m時(shí),函數(shù)y=-x2+4x-3的最小值為-3,最大值為1,
∴2≤m≤4,
故答案為:2≤m≤4.
點(diǎn)評(píng) 本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的性質(zhì)以及根的判別式等知識(shí),利用分類討論以及數(shù)形結(jié)合得出是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 50 | B. | 100 | C. | 150 | D. | 200 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 15米 | B. | 20米 | C. | 30米 | D. | 40米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com