分析 (1)在小麗展示的情形二中,如圖3,根據(jù)三角形的外角定理、折疊的性質(zhì)推知∠B=2∠C,即可得出答案;
(2)根據(jù)折疊的性質(zhì)、根據(jù)三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根據(jù)四邊形的外角定理知∠BAC+2∠B-2C=180°①,根據(jù)三角形ABC的內(nèi)角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C,利用數(shù)學(xué)歸納法,根據(jù)小麗展示的三種情形得出結(jié)論:∠B=n∠C.
解答 解:(1)∠BAC是△ABC的好角,
理由如下:如圖1,![]()
∵沿∠BAC的平分線AB1折疊,
∴∠B=∠AA1B1;
又∵將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,
即∠BAC是△ABC的好角,
故答案為:是;
(2)∠B=3∠C,
理由是:如圖2,![]()
在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分,將余下部分沿∠B2A2C的平分線A2B3折疊,點(diǎn)B2與點(diǎn)C重合,
證明如下:∵根據(jù)折疊的性質(zhì)知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根據(jù)三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根據(jù)四邊形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根據(jù)三角形ABC的內(nèi)角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
所以若經(jīng)過n次折疊發(fā)現(xiàn)△ABC是“可折疊三角形”,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為∠B=n∠C.
故答案為:∠B=n∠C.
點(diǎn)評 本題考查了翻折變換(折疊問題),解答此題時(shí),充分利用了三角形內(nèi)角和定理、三角形外角定理以及折疊的性質(zhì),難度較大.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5個(gè) | B. | 6個(gè) | C. | 7個(gè) | D. | 8個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{15}$ | B. | $\frac{12}{13}$ | C. | $\frac{5}{12}$ | D. | $\frac{13}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com