| 運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
| 進(jìn)價(jià)(元/雙) | m | m-20 |
| 售價(jià)(元/雙) | 240 | 160 |
分析 (1)根據(jù)“購(gòu)進(jìn)60雙甲種運(yùn)動(dòng)鞋與50雙乙種運(yùn)動(dòng)鞋共用10000元”列出方程并解答;
(2)設(shè)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200-x)雙,然后根據(jù)總利潤(rùn)列出一元一次不等式,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;
(3)設(shè)總利潤(rùn)為W,根據(jù)總利潤(rùn)等于兩種鞋的利潤(rùn)之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
解答 解:(1)依題意得:60m+50(m-20)=10000,
解得m=100;
(2)設(shè)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋x雙,則乙種運(yùn)動(dòng)鞋(200-x)雙,
根據(jù)題意得,$\left\{\begin{array}{l}{(240-100)x+(160-80)(200-x)>21000①\\}\\{(240-100)x+(160-80)(200-x)≤22000②}\end{array}\right.$,
解不等式①得,x>$\frac{250}{3}$,
解不等式②得,x≤100,
所以,不等式組的解集是$\frac{250}{3}$<x≤100,
∵x是正整數(shù),100-84+1=17,
∴共有17種方案;
(3)設(shè)總利潤(rùn)為W,則W=(240-100-a)x+80(200-x)=(60-a)x+16000($\frac{250}{3}$<x≤100),
①當(dāng)50<a<60時(shí),60-a>0,W隨x的增大而增大,
所以,當(dāng)x=100時(shí),W有最大值,
即此時(shí)應(yīng)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋100雙,購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋100雙;
②當(dāng)a=60時(shí),60-a=0,W=16000,(2)中所有方案獲利都一樣;
③當(dāng)60<a<70時(shí),60-a<0,W隨x的增大而減小,
所以,當(dāng)x=84時(shí),W有最大值,
即此時(shí)應(yīng)購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋84雙,購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋116雙.
點(diǎn)評(píng) 本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用,一元一次不等式組的應(yīng)用,解決問題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語(yǔ),進(jìn)而找到所求的量的等量關(guān)系和不等關(guān)系,(3)要根據(jù)一次項(xiàng)系數(shù)的情況分情況討論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10° | B. | 15° | C. | 20° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com