分析 先根據(jù)垂徑定理求得AM、CN,然后根據(jù)勾股定理求出OM、ON的長,即可得出結(jié)論.
解答
解:如圖,下降后的水面寬CD為1.2m,連接OA,OC,過點(diǎn)O作ON⊥CD于N,交AB于M.
∴∠ONC=90°.
∵AB∥CD,
∴∠OMA=∠ONC=90°.
∵AB=1.6,CD=1.2,
∴AM=$\frac{1}{2}$AB=0.8,CN=$\frac{1}{2}$CD=0.6,
在Rt△OAM中,
∵OA=1,
∴OM=$\sqrt{O{A}^{2}-A{M}^{2}}$=0.6.
同理可得ON=0.8,
∴MN=ON-OM=0.2(米).
答:水面下降了0.2米.
點(diǎn)評(píng) 本題考查的是垂徑定理的應(yīng)用以及勾股定理的應(yīng)用,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 33° | B. | 57° | C. | 67° | D. | 66° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1組 | B. | 2組 | C. | 3組 | D. | 4組 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com