分析 (1)判斷四邊形DEBF是否為平行四邊形,需證明其對(duì)角線(xiàn)是否互相平分;已知了四邊形ABCD是平行四邊形,故OB=OD;而E、F速度相同,方向相反,故OE=OF;由此可證得BD、EF互相平分,即四邊形DEBF是平行四邊形;
(2)若以D、E、B、F為頂點(diǎn)的四邊形是矩形,則必有BD=EF,可據(jù)此求出時(shí)間t的值.
解答 解:(1)當(dāng)E與F不重合時(shí),四邊形DEBF是平行四邊形![]()
理由:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD;
∵E、F兩動(dòng)點(diǎn),分別從A、C兩點(diǎn)以相同的速度向C、A運(yùn)動(dòng),
∴AE=CF;
∴OE=OF;
∴BD、EF互相平分;
∴四邊形DEBF是平行四邊形;
(2)∵四邊形DEBF是平行四邊形,
∴當(dāng)BD=EF時(shí),四邊形DEBF是矩形;
∵BD=12cm,
∴EF=12cm;
∴OE=OF=6cm;
∵AC=16cm;
∴OA=OC=8cm;
∴AE=2cm或AE=14cm;
由于動(dòng)點(diǎn)的速度都是1cm/s,
所以t=2(s)或t=14(s);
故當(dāng)運(yùn)動(dòng)時(shí)間t=2s或14s時(shí),以D、E、B、F為頂點(diǎn)的四邊形是矩形.
點(diǎn)評(píng) 本題考查平行四邊形的性質(zhì)、矩形的判定等知識(shí),熟練掌握平行四邊形、矩形的判定和性質(zhì),是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a+c | B. | a+b | C. | b+c | D. | a+b+c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com