分析 由矩形的性質(zhì)得出OA=OB,得出∠OAB=∠OBA,再由已知條件求出∠BAE=22.5°,得出∠OAB=∠OBA=67.5°,即可得出∠EAC.
解答 解:∵四邊形ABCD是矩形,
∴∠BAD=90°,OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∴∠OAB=∠OBA,
∵∠DAE:∠BAE=3:1,
∴∠BAE=$\frac{1}{4}$×90°=22.5°,
∵AE⊥BD,
∴∠AEB=90°,
∴∠OAB=∠OBA=90°-22.5°=67.5°,
∴∠EAC=67.5°-22.5°=45°.
點評 本題考查了矩形的性質(zhì)、等腰三角形的判定與性質(zhì);熟練掌握矩形的性質(zhì),并能進行推理計算是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com