分析 根據(jù)一元一次不等式的求解方法,求出不等式2x-1≥3x+1的解,判斷出不等式2x-1≥3x+1的最大整數(shù)解是多少即可.
解答 解:∵2x-1≥3x+1,
∴2x-3x≥1+1,
∴-x≥2,
解得x≤-2,
∴不等式:2x-1≥3x+1的最大整數(shù)解是-2.
故答案為:-2.
點(diǎn)評(píng) 此題主要考查了一元一次不等式的整數(shù)解,要熟練掌握,解決此類問題的關(guān)鍵在于正確解得不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式的整數(shù)解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | $\sqrt{6}$×$\sqrt{2}$=2$\sqrt{3}$ | C. | $\sqrt{18}$÷$\sqrt{3}$=$\sqrt{6}$ | D. | $\sqrt{(-2)^{2}}$=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1:2:2:1 | B. | 1:2:3:4 | C. | 2:1:1:2 | D. | 2:1:2:1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2a}$ | D. | $\frac{{\sqrt{2a}}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com