分析 (1)如圖,取BC的中點(diǎn)G.由三角形中位線定理易證EG=$\frac{1}{2}$BF=$\frac{1}{2}$OC;則由“有一組對(duì)邊平行且相等的四邊形為平行四邊形”證得四邊形AOBF為平行四邊形.所以平行四邊形的對(duì)邊相等:FB=AO;
(2)若四邊形AFBO是菱形,則OB=OA.故當(dāng)平行四邊形ABCD的對(duì)角線相等,即平行四邊形ABCD是矩形時(shí),四邊形AFBO是菱形.
解答 證明:(1)如圖,取BC的中點(diǎn)G,連接EG.![]()
∵E是BO的中點(diǎn),
∴EG是△BFC的中位線,
∴EG=$\frac{1}{2}$BF.
同理,EG=$\frac{1}{2}$OC,
∴BF=OC.
又∵點(diǎn)O是?ABCD的對(duì)角線交點(diǎn),
∴AO=CO,
∴BF=AO.
又∵BF∥AC,即BF∥AO,
∴四邊形AOBF為平行四邊形,
∴FB=AO;
(2)當(dāng)平行四邊形ABCD是矩形時(shí),四邊形AFBO是菱形.理由如下:
∵平行四邊形ABCD是矩形,
∴OA=OB,
∴平行四邊形AFBO是菱形.
點(diǎn)評(píng) 本題考查了平行四邊形的判定與性質(zhì)以及菱形的判定,有利于學(xué)生思維能力的訓(xùn)練.涉及的知識(shí)點(diǎn)有:有一組鄰邊相等的平行四邊形是菱形;矩形的對(duì)角線相等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3x2+4x=1 | B. | 3x2-4x=1 | C. | 3x2-4x-1=0 | D. | 3x2+4x-1=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x2-2x=5 | B. | 2x2-4x=5 | C. | x2+4x=5 | D. | 4x2+4x=5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k>-1 | B. | k>-1且k≠0 | C. | .k<1 | D. | k<1 且k≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{4x=3y}\\{x=2y-40}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{4x=3y}\\{x=2y+40}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{3x=4y}\\{x=2y+40}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{3x=4y}\\{x=2y-40}\end{array}\right.$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com