分析 首先設(shè)BE=xcm,由折疊的性質(zhì)可得:DE=BE=xcm,即可得AE=9-x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9-x)2+32,解此方程即可求得DE的長(zhǎng),繼而可得AE的長(zhǎng),則可求得△ABE的面積.
解答 解:
連接BD,作BD的垂直平分線交AD于E,交BC于F,連接EF,則折痕EF即可得到;
如圖所示:![]()
∵四邊形ABCD是長(zhǎng)方形,
∴∠A=90°,
設(shè)BE=x,
由折疊的性質(zhì)可得:DE=BE=x,
∴AE=AD-DE=9-x,
在Rt△ABE中,BE2=AE2+AB2,
∴x2=(9-x)2+32,
解得:x=5,
∴DE=BE=5,AE=9-x=4,
∴S△ABE=$\frac{1}{2}$AB•AE=$\frac{1}{2}$×3×4=6.
點(diǎn)評(píng) 此題考查了作圖-復(fù)雜作圖、折疊的性質(zhì)、長(zhǎng)方形的性質(zhì)以及勾股定理.第2小題有一定難度,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com