分析 (1)先求出OB=3,進(jìn)而求出BC=5,再用勾股定理建立方程求出點(diǎn)D;
(2)分點(diǎn)Q在y軸和x軸,兩種情況討論,先利用菱形的性質(zhì)求出BQ=5進(jìn)而得出點(diǎn)Q的坐標(biāo),再利用菱形的對(duì)邊平行即可求出點(diǎn)P的坐標(biāo).
解答 解:(1)如圖1,
設(shè)點(diǎn)D(3a,4a+3),
過(guò)點(diǎn)D作DE⊥y軸于E,把x=0代入y=$\frac{4}{3}$x+3中,得,y=3,
∴OB=3,
∴BE=OE-OB=4a+3-3=4a,BC=$\sqrt{O{B}^{2}+O{C}^{2}}$=5,
在Rt△BED中,根據(jù)勾股定理得,(3a)2+(4a)2=52,
∴a=±1,
∵點(diǎn)D在第一象限,
∴a=1,
∴D(3,7);
(2)由(1)知,BD=BC=5,
①當(dāng)點(diǎn)Q在y軸上時(shí),
設(shè)Q(0,q),
∵使得以B,D,P,Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊),且點(diǎn)P在第一象限內(nèi),
即:四邊形BDPQ是菱形,
∴PQ∥BD,DP∥BQ,
∴點(diǎn)P的橫坐標(biāo)為3,
∵四邊形BDPQ是菱形,
∴BQ=BD=5,
∵B(0,3),
∴Q(0,8)或(0,-2),
Ⅰ、當(dāng)點(diǎn)Q(0,8)時(shí),
∵直線BD的解析式為y=$\frac{4}{3}$x+3,
∴直線PQ的解析式為y=$\frac{4}{3}$x+8,
當(dāng)x=3時(shí),y=12,
∴P(3,12),
Ⅱ、點(diǎn)Q(0,-2)時(shí),
∵直線BD的解析式為y=$\frac{4}{3}$x+3,
∴直線PQ的解析式為y=$\frac{4}{3}$x-2,
當(dāng)x=3時(shí),y=2,
∴P(3,2),
②當(dāng)點(diǎn)Q在x軸上時(shí),
設(shè)Q(m,0),),
∵使得以B,D,P,Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊),且點(diǎn)P在第一象限內(nèi),
即:四邊形BDPQ是菱形,
∴BQ=BD=5,
∵OB=3,
∴OQ=4,
∴Q(-4,0)或(4,0)
Ⅰ、當(dāng)Q(-4,0)時(shí),∵一次函數(shù)y=$\frac{4}{3}$x+3的圖象交x軸于點(diǎn)A,
∴A(-$\frac{9}{4}$,0),
∴點(diǎn)Q在點(diǎn)A的左側(cè),
∴點(diǎn)P在第二象限內(nèi),不符合題意,舍去,
Ⅱ、當(dāng)點(diǎn)Q(4,0)時(shí),∵四邊形BDPQ是菱形,
∴BQ∥DP,PQ∥BD,
∵直線BD的解析式為y=$\frac{4}{3}$x+3,
∴設(shè)直線PQ的解析式為y=$\frac{4}{3}$x+b,
∴$\frac{4}{3}$×4+b=0,
∴b=-$\frac{16}{3}$,
∴直線PQ的解析式為y=$\frac{4}{3}$x-$\frac{16}{3}$①,
∵B(0,3),Q(4,0),
∴直線BQ的解析式為y=-$\frac{3}{4}$x+3,
∵D(3,7),
∴直線DP的解析式為y=-$\frac{3}{4}$x+$\frac{37}{4}$②,
聯(lián)立①②解得,x=7,y=4,
∴P(7,4),
即:滿足條件的點(diǎn)P的坐標(biāo)為(3,12)、(3,2)、(7,4).
點(diǎn)評(píng) 此題是一次函數(shù)綜合題,主要考查了待定系數(shù)法,菱形的性質(zhì),勾股定理,分類(lèi)討論的思想,解(1)的關(guān)鍵是求出BC,解(2)的關(guān)鍵是分點(diǎn)Q在x軸和y軸進(jìn)行討論,是一道中等難度的中考常考題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 180° | B. | 270° | C. | 360° | D. | 450° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com