分析 (1)由正方形的性質(zhì)知AD=BA、∠BAD=90°,由AQ⊥BE、DP⊥AQ知∠BAQ=∠ADP、∠AQB=∠DPA=90°,即可證△AQB≌△DPA得AP=BQ;
(2)由切線的性質(zhì)知∠OCD=90°即∠COB+∠D=90°,由圓周角定理知∠COB=2∠A,結(jié)合∠A=∠D可得答案.
解答 解:(1)∵四邊形ABCD為正方形,
∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°,
∵DP⊥AQ,
∴∠ADP+∠DAP=90°,
∴∠BAQ=∠ADP,
∵AQ⊥BE于點Q,DP⊥AQ于點P,
∴∠AQB=∠DPA=90°,
在△AQB和△DPA中,
∵$\left\{\begin{array}{l}{∠BAQ=∠ADP}\\{∠AQB=∠DPA}\\{AB=DA}\end{array}\right.$,
∴△AQB≌△DPA(AAS),
∴AP=BQ;
(2)如圖,連接OC,![]()
∵CD是⊙O 的切線,
∴OC⊥CD,
∴∠OCD=90°,
∴∠COB+∠D=90°,
由圓周角定理得∠COB=2∠A,
∵∠A=∠D,
∴2∠A+∠A=90°,
∴∠A=30°,
∴∠D=30°.
點評 本題主要考查正方形的性質(zhì)、切線的性質(zhì)、圓周角定理及全等三角形的判定與性質(zhì),熟練掌握正方形的性質(zhì)、切線的性質(zhì)是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 目的地 | 運(yùn)費(fèi)/(元/t) | |
| 甲倉庫 | 乙倉庫 | |
| A地 | 140 | 200 |
| B地 | 100 | 80 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com