| A. | 3 | B. | 1.5 | C. | $2\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 根據(jù)旋轉(zhuǎn)后AC的中點(diǎn)恰好與D點(diǎn)重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD=30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE為30°,進(jìn)而得到∠EAC=∠ECA,利用等角對(duì)等邊得到AE=CE,設(shè)AE=CE=x,表示出AD與DE,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EC的長(zhǎng),即可求出三角形AEC面積.
解答 解:∵旋轉(zhuǎn)后AC的中點(diǎn)恰好與D點(diǎn)重合,即AD=$\frac{1}{2}$AC′=$\frac{1}{2}$AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,設(shè)AE=EC=x,則有DE=DC-EC=AB-EC=3-x,AD=$\frac{\sqrt{3}}{3}$×3=$\sqrt{3}$,
根據(jù)勾股定理得:x2=(3-x)2+($\sqrt{3}$)2,
解得:x=2,
∴EC=2,
則S△AEC=$\frac{1}{2}$EC•AD=$\sqrt{3}$,
故選:D.
點(diǎn)評(píng) 此題考查了旋轉(zhuǎn)的性質(zhì),含30度直角三角形的性質(zhì),勾股定理,以及等腰三角形的性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com